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Abstract
Objectives  The law of crime concentration states that half of the cumulative crime in a 
city will occur within approximately 4% of the city’s geography. The law is demonstrated 
by counting the number of incidents in each of N spatial areas (street segments or grid 
cells) and then computing a parameter based on the counts, such as a point estimate on 
the Lorenz curve or the Gini index. Here we show that estimators commonly used in the 
literature for these statistics are biased when the number of incidents is low (several thou-
sand or less). Our objective is to significantly reduce bias in estimators for the law of crime 
concentration.
Methods  By modeling crime counts as a negative binomial, we show how to compute an 
improved estimate of the law of crime concentration at low event counts that significantly 
reduces bias. In particular, we use the Poisson–Gamma representation of the negative bino-
mial and compute the concentration statistic via integrals for the Lorenz curve and Gini 
index of the inferred continuous Gamma distribution.
Results  We illustrate the Poisson–Gamma method with synthetic data along with homicide 
data from Chicago. We show that our estimator significantly reduces bias and is able to 
recover the true law of crime concentration with only several hundred events.
Conclusions  The Poisson–Gamma method has applications to measuring the concentration 
of rare events, comparisons of concentration across cities of different sizes, and improving 
time series estimates of crime concentration.

Keywords  Gini index · Crime hotspot · Crime concentration · Negative binomial · Poisson 
process

Introduction

The law of crime concentration states that a large percentage of crime falls within a small 
fraction of all the locations across the urban landscape (Weisburd 2015). The law of crime 
concentration at place is a derivative of three decades of scholarly attention to the spatial 
patterning of crime (Paul 1984; Sherman et al. 1989; Weisburd et al. 2004; Weisburd and 
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Green 1995). The law is a quantitative estimation based on historical events. In his discus-
sion of the law and through the use of crime data from cities of various sizes, Weisburd 
(2015) established what he refers to as “spatial bandwidths” that account for disproportion-
ately high volumes of cumulative crime within a city’s geography. Specifically, he found 
that 50% of crime is confined to only 4.2–6.0% of the street segments, or a bandwidth of 
roughly 4% of city geography. He found that 25% of crime was confined to 0.8–1.6% of 
street segments, or a bandwidth of less than one and a half percent. Empirical pattern-
ing consistent with the law has been documented in a number of studies (Bernasco and 
Steenbeek 2017; Eck et al. 2017; Hipp and Kim 2017; Mohler et al. 2017; Weisburd 2015), 
though the specific bandwidths identified vary based on whether the spatial units of anal-
ysis are street segments (Sherman and Weisburd 1995; Weisburd et  al. 2012), addresses 
(Sherman et  al. 1989), or city grid cells (ranging 250–1000 square feet) (Hipp and Kim 
2017; Mohler et al. 2017). From a theoretical perspective the law lends guidance to bet-
ter understand the nature of crime and disorder across environmental (Brantingham 2016; 
Brantingham and Brantingham 1999) and community structural factors (Sampson and 
Byron Groves 1989; Sampson et al. 1997). From an intervention and policy perspective, 
the law can be leveraged to allocate police resources (Braga et al. 2014) and serves as a 
foundation to forecast crime (Kennedy et al. 2011; Mohler et al. 2015). Indeed, the law pro-
vides a model on how crime concentration can be realized into crime prevention benefits.

Despite a wealth of promising evidence, refined methods to improve the validity and 
reliability of estimates of crime concentration are needed to maximize the intervention 
potential of this law, and to generalize the law to other measures of social problems across 
varying environmental, social, and political contexts. Weisburd (2015, 2018) articulates 
this demand in his solicitation of further research and improved analytical methods to iden-
tify where the law of crime concentration at place does, and does not, apply. Moreover, 
Bernasco and Steenbeek (2017) draw attention to challenges of method fidelity when deter-
mining crime concentration. Indeed, the law of crime concentration at place is an axiom, 
and not a prescriptive set of guidelines for measurement outside of the expected cumulative 
crime and cumulative place bandwidths.

In its most simple form, the law of crime concentration at place is demonstrated by 
calculating the percentage of total crimes falling within x% of the city over an observation 
window (typically x = 25% or 50% ) (Weisburd 2015). Commonly used estimators of crime 
concentration produce valid estimates when the number of crimes is large and exceeds the 
number of places. However, when crime counts are low and are exceeded by the num-
ber of places, biased estimates are produced. Specifically, crime concentration is estimated 
as higher, given low crime counts compared to high crime counts, when we expect them 
to be equivalent. This estimation bias is discussed in detail below, though this concern is 
broached here as this issue has gone largely unaddressed in research to date and is the focus 
of the present study.

In this article we introduce an estimator for the Lorenz curve and Gini index with sig-
nificantly reduced bias for all data set sizes when the crime counts follow a negative bino-
mial distribution. We first model crime counts as a negative binomial random variable, 
which has the benefit of having a Poisson–Gamma representation. Secondly, we provide 
analytic formulas for the Lorenz curve and the Gini index given a continuous probability 
density. We then combine these facts to provide an inference methodology where (1) the 
parameters of a negative binomial are estimated from the empirical count data and (2) the 
Lorenz curve and Gini index are then computed via numerical integration or through simu-
lation from the fitted Gamma density. We illustrate the methodology with synthetic data 
generated by a stationary Poisson process, a self-exciting point process, and real homicide 
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data from Chicago. We show that our estimator can correctly identify the law of crime 
concentration with just a few hundred events, whereas the empirical estimator commonly 
used in practice requires several thousand. This has implications for crime concentration 
analyses over time where event counts may be low in each time window. In our example, 
we show that yearly homicide concentrates at less than half the level of the estimator used 
in Weisburd (2015).

Need for Improved Concentration Estimation Methods for Low Event 
Counts

Many studies to date have avoided the estimate bias issue because their event counts far 
exceed the number of places given their unit of analysis. However, a few notable studies 
have made substantive contributions to the crime concentration literature based upon low 
count event data. Recently, Andresen Martin et al. (2017) examined assault, burglary, rob-
bery, theft from vehicle, theft, motor vehicle theft, and other crime across 16 years in Van-
couver. Street segments and intersections, their spatial units of analysis (18,445), exceeded 
the number of crime incidents, with the exception of theft, theft from vehicle, and bur-
glary within beginning years of data. In another study using Vancouver data from years 
1991, 1996, and 2001, Andresen and Malleson (2011) estimate the spatial concentration of 
assault, burglary, robbery, sexual assault, theft, theft from vehicle, and motor vehicle theft 
across census tracts (110), dissemination areas (1011), and street segments (11,730). Their 
reported crime counts indicate that assaults (in 1996 and 2001), theft (in 2001), and for all 
years robbery, sexual assault, and theft of vehicle all had lower frequencies than the total 
number of street segments. In some crime cases the number of incidents was quite small, 
such as sexual assault (between 440 and 672) and robbery (between 1251 and 1893).

Macbeth and Ariel (2017) investigated cumulative crime and crime harm concentra-
tion in Northern Ireland from 2012-2014 using street segments. Though they found 50% of 
cumulative crime to concentrate in 2.5% of street segments, the total number of street seg-
ments (19,217) exceeded the number of total crime events in all study years; 2012 (18,269), 
2013 (16,183), and 2014 (15,769). In their test of the spatial concentration of drug activity 
at Seattle street segments (a total of 24,023), Hibdon and Groff (2014) leveraged call for 
service data from both emergency medical services (1706 incidents) and police (3716 inci-
dents) in 2004. Their overall results suggested half of all drug activity events concentrated 
within just 1.11% of street segments. Lastly, Braga et al. (2010) estimated the concentra-
tion of 7359 firearm incidents on 28,530 street units across 29 years in Boston. Speaking 
directly to the issue at hand, the authors note “The fact that each year, on average, there are 
fewer than 254 ABDW-Firearm incidents among nearly 28,530 street units suggests that 
even a purely random distribution might produce the observed clustering” (p. 42).

Discussing these studies is not to suggest criticism, but to illustrate a need for methods 
improvement. This estimation bias issue is also likely to become a more common chal-
lenge given the rapid growth of crime concentration studies generally and a growing focus 
on more crime-specific estimates of spatial crime concentration (Haberman 2017; Schnell 
et al. 2017). Studies of crime concentration within smaller cities are also expected to grow 
in coming years (Weisburd 2015). Thus, this estimation bias issue has direct implications 
as smaller cities exhibit lower crime counts than urban areas, and the most common unit 
of analysis—street segments—are often larger in small cities compared to urban areas. For 
example, in his study of crime concentration in multiple cities, Weisburd (2015) reports 
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descriptive statistics in his Table 2 that show that an average violent crime rate and street 
segment length of the five large cities is 6.62 violent crimes per 1000 residents and a street 
segment length of 364 feet, compared to an average violent crime rate of 3.13 per 1000 
residents and a street segment length of 615 feet for the three small cities. Thus, not only 
do smaller cities have fewer incidents of crime, but the unit of analyses to capture these 
incidents are also larger and possibly further exacerbate estimate bias. When the concentra-
tion of crime over time is analyzed, event counts in spatial units over shortened time win-
dows may have a larger frequency of zeros that inflate the estimate of crime concentration.

Lastly, an improved method for estimating the spatial concentration of crime for low 
event counts will help scholars and practitioners apply the law of crime concentration to 
event types beyond traditional crime counts. Common estimation methods used for crime 
concentration are also employed by scholars investigating patterns of offending and vic-
timization (Bernasco and Steenbeek 2017). Scholars are also beginning to estimate the 
concentration of events related to public health (Weisburd et al. 2018; White and Weisburd 
2017) and social harm (Macbeth and Ariel 2017). Accurately estimating low count events 
may also help inform the theoretical understanding of crime concentration as it would ena-
ble models to account for environmental factors that shape high-crime places (Eck et al. 
2007). Perhaps most importantly, accurate estimation of low event concentrations will help 
tailor more effective interventions. If improved estimates can generate more informative 
place-identification, police are better positioned to engage in hot spots policing. Moreover, 
low event counts can be better incorporated into problem-oriented approaches to reduce 
crime, disorder, and public health challenges—an approach proven to be an effective strat-
egy within hot spots (Braga et al. 2014).

Commonly Used Estimators for the Law of Crime Concentration

The two common estimators used in criminology to empirically test the law are (1) points 
on the Lorenz curve (Hipp and Kim 2017; Mohler et al. 2017; Weisburd 2015) and (2) the 
Gini index (Bernasco and Steenbeek 2017; Eck et al. 2017). For ordered (greatest to least) 
crime counts y(i) in spatial units i = 1,… ,N , the statistic used to estimate a point on the 
Lorenz curve is,

where p = r∕N is the fraction of cells or street segments flagged as hotspots. The estimator 
for the Gini index is given by,

While both of the above estimators are consistent, they suffer from severe bias for low 
event counts. In the extreme case of observing one crime event over a short observation 
window, then 100% of crime is captured in 1 / N cells on that day ( L(1∕N) = 1 and G ≈ 1 ). 
However, if the observation window is expanded, then other cells will start to contain 
crime and L(1 / N) and G will decrease (for example, they will decrease to 1 / N and 0 for a 
spatially uniform Poisson process).
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Recent attempts have been made to address this problem. Curiel et al. (2018) propose 
a method for addressing the small sample size problem by modeling the rate of crime as 
a function of population in each spatial unit. However, population estimates are often not 
available at the street segment and grid cell level (where the law of crime concentration is 
typically measured).

Curiel and Bishop (2016) suggest modeling crime counts as a Poisson mixture 
q1�1 +⋯ + qk�k where qi are the mixture weights and �i are the Poisson means. They then 
provide a “rare event concentration coefficient” (RECC) for estimating the Gini index,

A statistic is not given for points on the Lorenz curve in Curiel and Bishop (2016), how-
ever we show in "Study of Homicide Counts in Chicago (2001−2017)" section how their 
method can be extended for this purpose. We find the Poisson–Gamma model is a better 
fit for Chicago homicide concentration, however in other situations the Poisson mixture 
may be a good alternative. Our point in this paper is that, for low to medium event counts, 
a model for the data needs to be used instead of the non-parametric estimators given by 
Eqs. 1 and 2.

An adjusted Gini coefficient (Bernasco and Steenbeek 2017) has been proposed for 
small event counts,

where M is the total number of crimes, N is the total number of spatial locations, and z(i) is 
the rank order (greatest to least) proportion of crimes occurring in place i. We will show 
that this estimator, like Eq. 2, also suffers from bias, albeit in the direction towards under-
representing concentration. In particular, for low event counts the adjusted Gini estimator 
under-estimates the value of the Gini index.

There also has been work outside of criminology to improve estimators of the Gini 
index. An estimator for the Gini coefficient and its standard error may be obtained through 
OLS (Giles 2004) and in Langel and Tillé (2013) a simple method for approximating vari-
ance is given. In Langel and Tillé (2013) the authors also review the literature on estima-
tion of the Gini index, highlighting how results have been republished multiple times. Our 
hope here is to bring to light these issues in criminology, without claim that we are the first 
to tackle these problems.

Estimating Crime Concentration from a Poisson–Gamma Model 
of Crime Counts

Poisson–Gamma Representation of the Negative Binomial

Let yi , i = 1,… ,N , denote crime counts in each of N spatial units over an observation win-
dow of time [0, t], containing a total of M crimes. We assume the rate of crime in each unit 
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i is stationary with Poisson rate �i . Therefore, the probability of observing yi = y is given 
by:

For large sample sizes (large t) when the majority of the yi are non-zero, the non-para-
metric estimators in the previous section can be used. For small sample sizes we need a 
parametric model that can extrapolate into the zero-count cells. Therefore, we assume that 
�i themselves are random variables with continuous probability density f (�) defined on 
[0,∞) . It is from this density f (�) that the law of crime concentration arises as f captures 
the heterogeneity of crime risk across space. Our results that follow extend to general f (�) , 
but here we further assume that the density is Gamma:

Then it follows (Karlin 2014) that the counts yi are negative binomial and that

where � = kt∕� . Here k is the size or dispersion parameter that controls how over-dispersed 
the negative binomial counts are and � is the mean of the negative binomial.

Integral Formulas for the Lorenz curve and Gini index

Let f (�) be a continuous density on [0,∞) with mean � and cumulative distribution func-
tion F(�) . Then the Lorenz curve L(p) is defined by,

and the Gini index is given by Xu (2003),

We argue that the law of crime concentration should be defined in terms of Eqs. (8) and 
(9). Note specifically that Eqs. (8) and (9) are not directly based off of crime counts yi , but 
rather the underlying distribution of intensities f (�) . However, Eqs.  (1) and (2) provide 
consistent estimators of (8) and (9) that converge as t → ∞ in Eq. (5). This is because, as t 
gets large, the strong law of large numbers states that almost surely (Daley and Vere-Jones 
2003),

Thus for large t we may replace Eqs. (1) and (2) with,
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and

which are themselves estimators of (8) and (9). However, new methods of estimation 
are needed for small t. Specifically, the intensities are not directly observed, and must be 
estimated from crime counts. The problem we then consider is estimation of (8) and (9) 
from a finite, and likely small, sample of crime counts that follows a negative binomial 
distribution.

One important property of the Lorenz curve to note is that in the case of the Gamma dis-
tribution the Lorenz curve only depends on the dispersion parameter k (Salem and Mount 
1974). Thus the time parameter t in Eq. (5) that also appears in the scale parameter � does 
not play a role. Also, the Gamma density Eqs. (8) and (9) do not have analytic solutions, 
but they can be approximated via simulation or numerical integration.

Estimation of the Law of Crime Concentration for Small t

When t is small enough in Eq.  (5), the majority of the empirical counts yi will be zero, 
yielding a biased estimate of the law of crime concentration if employing Eqs. (1) and (2) 
directly. However, we can use Eqs. (8) and (9) to estimate the Lorenz curve and Gini index 
for small t, so long as we can accurately estimate the parameters k and � of the Gamma dis-
tribution of intensities from our event counts yi . Given count data defined on grid cells or 
street segments our general procedure then is as follows:

Estimation Procedure

1.	 Estimate negative binomial size k and mean � from the count data.
2.	 Define a Gamma distribution with shape k and rate kt∕�.
3.	 Compute the law of concentration using numerical integration or simulation from 

Eqs. (8) and (9).

In step 1 above, the parameters of the negative binomial can be estimated via maximum 
likelihood where the log-likelihood is given by,

After taking the partial derivative of  with respect to � and setting equal to zero, one 
finds that the maximum likelihood estimate is 𝜇̂ = M∕N . A similar procedure for finding k̂ 
unfortunately does not provide an analytical solution, but Newton’s method can be used to 
solve for the parameter (in the MASS library of R the function fitdistr can be used and we 
provide example code in the “Appendix”).

In step 3 above, either simulation or numerical integration can be used to compute sta-
tistics related to the law of crime concentration. In the case of simulation, a Gamma ran-
dom variable gi is simulated in each of the N spatial units (the R function rgamma can be 
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used and we provide example code in the “Appendix”). Then Eq. (1) or (2) are estimated 
using the gi . For example, a point on the Lorenz curve is estimated as,

and the Gini index is estimated as,

It should be noted that the small sample size zero count issue is no longer a problem in 
Eq. 14. This is because the Gamma distribution is continuous and the gi are all non-zero.

Alternatively, numerical integration can be used to estimate statistics related to the law 
of crime concentration. For example, the integral in Eq. 8 can be approximated as,

and the integral in Eq. 9 can be approximated as,

for some small parameter h.
Note that in step 2 we technically need the value of t. But, as we pointed out above, the 

shape parameter k is what determines the Lorenz curve for a Gamma distribution, and � 
plays no role. Hence, in practice we simply use a value � = 1 without loss of generality. In 
the “Appendix” at the end of the paper, we provide R code for estimating the Lorenz curve 
and Gini index from negative binomial count data using simulation (as used in Fig. 7) and 
numerical integration (as used in Fig. 8); we find both work equally well in practice. We 
note that Eqs.  (8) and (9) are general and do not apply only to the Gamma distribution 
(thus this methodology would apply to other Poisson mixture models). In the experiments 
that follow, we will show that even for small t corresponding to a few hundred events this 
procedure works well in recovering the correct law of crime concentration.

Results

Simulation Study

In our first experiment we simulate a Poisson–Gamma random variable with shape 
k = 0.82 and rate � = 1∕7.28 for N = 1000 cells and varying t. To generate a synthetic 
data set we first simulate N = 1000 Gamma random variables �i representing the Poisson 
parameter in each cell i. Next we generate a Poisson process in cell i on t ∈ [0, 4] by first 
drawing a Poisson random number Ei with mean 4�i and then distributing Ei event times 
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uniformly on [0, 4]. We then compute each estimator on the data set for increasing t (using 
all data up to time t). We repeat this simulation for 50 synthetic data sets.

In Fig. 1 we plot our Poisson–Gamma estimator (using simulation) against the estimator 
given by Eq. (1) for 5% of cells flagged ( L(0.05) ≈ 0.22 on the Lorenz curve) as the data 
set size increases. We see that the empirical concentration estimator approaches 1 at small 
event sizes and only approaches the correct value for several thousand events. For even 
a few hundred events the Poisson–Gamma estimator is close to the true value of ≈ 0.22 . 
We point out here that the inaccuracy of the empirical non-parametric estimators given by 
Eqs. 1 and 2 are due to bias rather than variance, as every curve is above the true value of 
the statistic being estimated.

In Fig. 1 we repeat the same experiment for the Gini index. We also include the adjusted 
Gini estimator proposed in Bernasco and Steenbeek (2017). We note that the adjusted Gini 
index is biased downward, under-estimating crime concentration at low events, then even-
tually converges to the empirical Gini estimator and over-estimates crime concentration 
before converging to the correct value.

Study of Homicide Counts in Chicago (2001–2017)

Next we apply our methodology to homicide count data in Chicago. The data is an open 
data set that can be downloaded at the Chicago open data portal (https​://data.cityo​fchic​
ago.org/). There are 8911 homicides in the data set in the years spanning 2001–2017. We 
divide Chicago into a grid of 6524 cells, each of size 1000 × 1000 ft2.

First we generate multiple homicide data sets by shuffling the event times in the original 
data set (this step allows for the quantification of uncertainty and also enforces stationar-
ity of the process). Note that this procedure will not change the number of events in each 
cell, only when those events occurred. Further, if the intensity �i of each cell is station-
ary, then all events are uniformly distributed in time, and shuffling the times of events will 
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retain this characteristic. Hence, each shuffled dataset will retain the same distribution of 
intensities f (�) , and should yield the same crime concentration. Next we repeat the same 
exercise as above, computing the estimators for the law of crime concentration as the data 
set size increases. In Fig. 2 we plot the estimates for L(0.05) and G as we did for the simu-
lation study in the previous section. We note that the Poisson–Gamma estimator is stable, 
predicting concentration at about 15% of crime in 5% of the city, even for a few hundred 
events. After 6000 events the empirical estimator qualitatively appears to match the Pois-
son–Gamma estimator in Fig. 2. However, for the Gini index the empirical and adjusted 
Gini estimators still have not converged to our Gini estimate that is consistently less than 
0.75.

To understand when the empirical estimator would converge, we perform a simulation 
analogous to that of the previous section, but with parameters chosen to match the Chicago 
dataset. In particular, we estimate the Poisson–Gamma model on the entire Chicago data 
set, yielding estimates of .334 and 4.1256 for the shape and scale. In Fig. 3 we see that over 
20,000 events are needed for the empirical Gini index simulation curves to match those of 
the Poisson–Gamma estimator.

In Fig. 4 we plot the best fit negative binomial curve against the empirical density (nor-
malized histogram) of homicide counts to verify that the Poisson–Gamma model is provid-
ing a good fit. The Chicago data is not perfectly fit by a negative binomial, however the fit 
is sufficient to accurately estimate parameters related to the law of crime concentration.

Comparison to a Poisson Mixture

We also compare the Poisson–Gamma method to the Poisson mixture model proposed 
in Curiel and Bishop (2016). As suggested in Curiel and Bishop (2016) we use the 
CAMAN R package (Schlattmann et al. 2015) to estimate the Poisson mixture weights 
qi and means �i . To estimate a point on the Lorenz curve given these parameters, we 
again assume crime is stationary and that the number of events in a grid cell is given 
by a Poisson process with intensity � over time t, where � is generated by the Poisson 
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Fig. 2   (Left) empirical concentration of homicides in Chicago vs. number of sampled homicides in red. 
Poisson–Gamma estimator in blue. (Right) empirical Gini index vs number of sampled homicides in red, 
adjusted Gini index in green, Poisson–Gamma estimator in blue (Color figure online)
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mixture model. To estimate the Lorenz curve we use simulation rather than numerical 
integration. In particular, we use a sufficiently large t to avoid the zero-count cell issue 
and simulate the estimated Poisson mixture process until the total number of events is as 
large as necessary to reach convergence in the empirical Lorenz estimator; this is very 
similar to the simulation approach for the Poisson–Gamma model.

In Table 1 we compare the mean absolute percent error (MAPE) for estimation of 
Chicago homicide concentration in the top 5% of cells vs. number of events used to 
estimate the Poisson-mixture model (CAMAN) and the Poisson–Gamma model. The 
empirical concentration of Eq.  1 using all M = 8911 events is used as ground truth, 
and the MAPE is calculated for 200 bootstrap samples of the Chicago data wherein 

Fig. 3   Simulated Poisson–
Gamma process with MLE Pois-
son–Gamma parameters (shape 
.334 and scale 4.1256) estimated 
from Chicago homicide data 
(with 1000 × 1000 ft2 cells). 
Empirical Gini index vs number 
of events in red. Adjusted Gini 
index in green and Poisson–
Gamma estimator in blue. True 
value in black (Color figure 
online)
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Fig. 4   Log–log plot of the 
empirical density (normalized 
histogram) of Chicago homicide 
counts (black circles) and best fit 
negative binomial (red)
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event times are randomly shuffled as described above. Here we see that for low event 
counts (less than 200), the Poisson–Gamma model yields a better estimator in terms of 
MAPE, however the Poisson-mixture and Poisson–Gamma are both significantly more 
accurate than using Eq.  1 when M is low. The performance of a method will likely 
depend on the dataset in question (and sample size), so model selection, for example 
via the AIC, could be used.

Analysis of Concentration Over Time

Next we illustrate our methodology on Chicago homicide concentration time series. 
This type of analysis is typically conducted to illustrate the stability of crime concen-
tration over time (Hipp and Kim 2017; Mohler et al. 2017; Weisburd 2015). However, 
in such an analysis the time window is shortened (i.e. small t) and thus there is greater 
risk of over-estimating crime concentration. In Fig. 5 we plot the Lorenz and Gini esti-
mators applied to homicide counts for each year from 2001 to 2017. Here we see that 
the Poisson–Gamma estimator is stable, not only in time, but in comparison to the esti-
mator on the entire data set (both around 15%). However the empirical estimator puts 
crime concentration per year at around 35%, a significant over-estimate. Similarly, the 
adjusted Gini index under-estimates crime concentration by a factor of 2.

Table 1   Mean absolute percent 
error (MAPE) for estimation of 
Chicago homicide concentration 
in the top 5% cells vs. number of 
events in the data set

Empirical concentration with all M = 8911 events used as ground 
truth. MAPE calculated for 200 bootstrap samples

M (# events) Empirical CAMAN Poisson–Gamma

50 585.42 213.80 72.27
100 585.42 108.12 38.23
150 384.52 65.57 25.05
200 279.23 40.57 20.72
250 219.01 25.49 18.06
300 180.85 13.87 15.34
350 156.05 9.33 13.07
400 139.36 7.58 11.36
450 127.70 8.49 9.87
500 120.12 10.93 9.12
550 114.80 11.51 8.54
600 111.40 12.09 7.98
650 109.74 11.27 7.57
700 108.18 11.54 7.14
750 103.27 11.61 6.69
800 95.14 10.88 6.61
850 87.43 10.81 6.13
900 80.89 10.35 6.10
950 75.38 9.94 5.75
1000 70.70 10.03 5.39
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Estimating Crime Concentration for a Hawkes Process

The method established in this work has very specific assumptions underlying it - that the 
process is stationary and that the crime counts are distributed according to a negative bino-
mial. However, there is abundant empirical evidence that the space-time patterns of many 
types of crime can be described by self-exciting point processes (see for example Mohler 
et al. 2015 and the references within). Here, we relax the assumptions used in "Estimat-
ing Crime Concentration from a Poisson–Gamma Model of Crime Counts" section by per-
forming a simulation study in which the individual location’s rates are not stationary Pois-
son processes, but are rather Hawkes processes (Mohler et al. 2015). The Hawkes process 
is self-exciting, in that every event may excite further events to occur, such that all events 
can be classified as either background events, which are not caused by any prior event, or 
daughter events, which are events that are directly caused by some other event, referred to 
as its parent. Here, the intensity at location i, �i(t) is given by

where tij is the time of the jth event at location i, �i is the rate of background events at loca-
tion i, � is the excitation parameter that measures how many daughter events in expectation 
are triggered by any other event, and � sets the timescale over which these excited events 
will occur following their parent. We point out that here we consider specifically a case in 
which each location may have its own background intensity �i , but that all locations share 
the same � and � parameters.

While certainly Eq. 18 generally causes nonstationary intensities at each location, it is 
also true (Da Fonseca and Zaatour 2014; Santitissadeekorn et al. 2018) that the steady-state 
expected intensity for the Hawkes process is given by �i∕(1 − �) , while the steady-state 
variance of the intensity is given by ��2�i∕2(1 − �)2 . This fact motivates our numerical 
experiment. Specifically, we simulate 50 realizations of a Hawkes process with � = 0.7 and 

(18)𝜆i(t) = 𝜇i +
∑

tij<t

𝜃𝜔e−𝜔(t−tij) ,
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Ĝ
Fig. 5   (Left) Concentration of homicides in Chicago in top 5% of hotspots in each year for the empirical 
estimator (red) and Poisson–Gamma estimator (blue). (Right) Gini index of homicides in Chicago in each 
year for the empirical Gini estimator (red), adjusted Gini estimator (green) and Poisson–Gamma estimator 
(blue) (Color figure online)
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a chosen � , and where the background rates �i are Gamma distributed with shape k = 0.82 
and rate � = 1∕7.28 for N = 1000 locations; these parameters are identical to those used 
in "Simulation Study" section. Then, the steady-state expected intensities of the Hawkes 
processes will also be Gamma distributed, and the variance of that distribution will be pro-
portional to � . We would therefore expect that for small values of � , our estimation pro-
cedure should still work quite well for the Hawkes process, as each location will have an 
approximately stationary intensity that is drawn from a Gamma distribution. In fact, for 
� = 0.5 , the results are nearly identical to those of Fig.  1, and the estimation procedure 
presented here gives a significantly less biased estimator than the alternatives considered 
for the Hawkes process.

However, for � = 50 , none of the methods presented here gives a very good estimate 
until the total number of events M is quite large; see Fig. 6. This is to be expected, as the 
Hawkes process with this � value has a very large variance, and so is not well approxi-
mated by a stationary process, so that many events must be considered before the asymp-
totic true value is achieved for the various estimators. However, this particular obstacle 
is surrmountable in this case by pre-processing the event data before attempting the esti-
mation via the methods above. Specifically, we can use stochastic declustering (Zhuang 
et al. 2002) to probabilistically identify which of the events in the dataset are background 
events, whose intensities are indeed the stationary �i , then run the concentration estimators 
on those background events alone. More specifically, the stochastic declustering technique 
involves estimating the parameters of the Hawkes process along with a probabilistic indi-
cator pb for each event as to whether it is a background event (and probabilistic indicators 
as to which event each event may be the daughter of); for our purposes we simply thresh-
old these pb so that any event with pb ≥ 1∕2 is considered background, while all others 
are not. This process is computationally intensive, so we only present results for a small 
number of total event values M in Tables 2 and 3. The results show that the declustering 
technique allows for estimates that are significantly closer to the true value than for the 

Fig. 6   Simulated Hawkes process 
on 1000 cells. Empirical concen-
tration (fraction of events in top 
5% of cells) vs number of events 
in red. Poisson–Gamma estima-
tor in blue (Color figure online)
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non-declustered data, and that the Poisson–Gamma estimator in this case shows less biased 
estimates than the other methods considered.

Discussion and Conclusion

That a small fraction of locations in an urban landscape typically accounts for a large frac-
tion of crime is widely observed and potentially warrants a claim for law-like status. A 
law of crime concentration implies that universal causal mechanisms are at play and gen-
eral crime prevention measures might work across temporal or geographic contexts. Thus 
a law of crime concentration is of great theoretical and practical importance (Weisburd 
2015).

While crime concentration is widely observed, the two most common measurement 
methods fail to correctly estimate crime concentration for low crime counts. The concen-
tration of crime is variously overestimated (Lorenz, Gini) or underestimated (adjusted 
Gini), depending upon the estimator in question, given small M (crime) and large N (seg-
ments or cells). Such estimation errors can significantly impede the ability to conduct com-
parative research. Crime concentration estimated from small M large N settings cannot 
be compared without bias. Thus, crime concentration from small cities, or low crime rate 
sub-areas of larger cities, cannot be readily compared with that from large cities. This is 
a problem given that of the 9,579 cities reporting to the FBI in the U.S. in 2016 for Part 
I crimes, 88.2% (8448) of them reported < 1000 combined property and violent crimes 
(Federal Bureau of Investigation 2016). Also, crime concentration estimated at fine spatial 
and temporal scales cannot be readily compared with that estimated at coarser scales.

An inability to compare settings without bias may impact how we model crime causa-
tion, as well as what policy decisions are made in response to crime. For example, the 
importance of micro-spatial crime attractors might be overstated (understated) given 
an overestimate (underestimate) of crime concentration computed for small temporal 

Table 2   Estimation of L(.05) with Poisson–Gamma estimator along with Declustered Poisson–Gamma 
Estimator for Hawkes process with 2500 and 5000 events

For comparison we include the empirical concentration estimator applied to the Hawkes events along with 
the empirical estimator applied to the declustered events

# Events True L(.05) Poisson–Gamma PG declust. Empirical Emp. declust.

2500 0.219 0.517 ± 0.032 0.286 ± 0.036 0.565 ± 0.034 0.388 ± 0.041
5000 0.219 0.427 ± 0.023 0.203 ± 0.013 0.462 ± 0.025 0.271 ± 0.013

Table 3   Estimation of Gini index with Poisson–Gamma estimator along with declustered Poisson–Gamma 
Estimator for Hawkes process with 2500 and 5000 events

For comparison we include the empirical Gini estimator applied to the Hawkes events along with the empir-
ical estimator applied to the declustered events

# Events True Gini Poisson–Gamma PG declust. Empirical Emp. declust.

2500 0.544 0.842 ± 0.014 0.643 ± 0.044 0.864 ± 0.012 0.778 ± 0.021
5000 0.544 0.789 ± 0.013 0.511 ± 0.027 0.809 ± 0.011 0.673 ± 0.014
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windows. Community or policing resources might be overallocated (underallocated) to cer-
tain places or times given an overestimate (underestimate) of crime concentration.

To address these concerns we introduced a method for estimation of parameters arising 
in the law of crime concentration with significantly reduced bias. The method has applica-
tions to measuring the concentration of rare events and also to improving time series esti-
mates of crime concentration. We restricted our attention to the negative binomial distribu-
tion. In this case the estimation procedure is simplified because of the Poisson–Gamma 
representation and the law of concentration can be estimated from the inferred Gamma 
using numerical integration or simulation.

In the existing crime concentration literature, there are often underlying assumptions 
on the distribution of the data (for example stationarity) that are not explicitly stated. In 
our work we have made our mathematical assumptions explicit in terms of stationarity of 
the process generating crime and the distribution of counts (negative binomial). Whether 
these assumptions hold or are violated in different data sets will have implications for the 
law of crime concentration. Our method will work for any type of spatial unit (place, seg-
ment, grid cell, etc.) if the assumptions of iid counts, stationarity, and negative binomial 
hold. In situations where the data is not negative binomial, a Poisson mixture model may 
still be employed with an arbitrary prior f (�) . Depending on the form of f (�) parametric 
methods may still be used, though if f (�) is multi-modal then non-parametric methods may 
be needed.

We have also not provided a rigorous mathematical analysis of the bias and variance 
of the estimators detailed in this paper, instead relying on simulation. We believe that the 
accuracy of each method is a function of the number of events and the number of spatial 
units and it would be interesting to develop a theoretical understanding for the relation-
ship. The size of the spatial unit also plays a role in the calculation of statistics related to 
the law of crime concentration (Oliveira et al. 2017; Weisburd et al. 2009). The smaller the 
spatial unit, the greater the concentration as measured by the empirical estimators given by 
Eqs. 1 and 2. However, this higher concentration is at least in part due to the large number 
of zero-count units of measurement and our methodology will be useful in the analysis of 
concentration in these small areas.

Another consideration is the near-repeat or self-exciting phenomena observed in certain 
types of crime events. Here we have only addressed one specific case of this type of pro-
cess, showing through simulation that our method can still be used directly in some cases 
with good results, while in other cases it can only be used after a further data pre-process-
ing step has been completed. Of course, many other types of self-exciting or near-repeat 
processes could also be explored, and more advanced estimators may need to be developed 
for inference of the law of crime concentration in these scenarios. These are directions for 
future research.
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Appendix: R Code for Estimation of the Law of Crime Concentration

See Figs. 7 and 8.
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