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Abstract—We analyze the impact of the Los Angeles Mayor’s
Office of Gang Reduction Youth Development (GRYD) preven-
tion programming using quasi-experimental data. We model
the evolution of questionnaire scores and apply Dynamic Mode
Decomposition (DMD) to describe the asymptotic behavior of
the dynamical system. The analysis indicates that risk decreased
for youth who enrolled in GRYD prevention services, while it
increased or remained the same for those who were in the control
group. We augment these observations using a difference-in-
differences (DID) model, showing that the decrease in risk can
be attributed to enrolment in prevention services. We draw a
connection between DMD and DID using both mathematical
analysis and empirical evidence from the questionnaire data.
Combining DMD and DID with factor analysis, we investigate
the effectiveness of prevention services with respect to different
attitudinal domains. We conclude that gang prevention is most
effective in impacting attitudes towards negative peer obedience
and least effective in impacting attitudes towards violence for self
defense. Our analytical approach can be extended to other types
of repeated questionnaires.

Index Terms—dynamic mode decomposition, difference in
differences, causal inference, factor analysis

I. INTRODUCTION

Gangs remain a difficult challenge for many cities around
the world [5]. Starting in 2008, the Los Angeles Mayor’s
Office of Gang Reduction & Youth Development (GRYD)
implemented a comprehensive strategy for community en-
gagement, gang prevention, gang intervention, and violence
interruption, all with the goal of helping communities impacted
by gang violence [19]. GRYD Prevention, the subject of this
study, delivers services to youth between the ages of 10 and
15 who meet certain criteria that place them at-risk of gang
involvement. Specifically, youth referred to GRYD by parents,
teachers, church figures, or other community members, may
complete the Youth Services Eligibility Tool (YSET) ques-

tionnaire. The nine-part questionnaire is designed to evaluate
attitudes and behaviors related to the risk of joining gangs
[6]. If youth exceed certain risk thresholds, they are eligible
to receive GRYD Prevention services and take the YSET
approximately every six months to assess continued need. Pre-
vention services may include monthly case management team
meetings, individual youth and family meetings, intentional
youth development activities, and referrals to other services
as needed. Prevention services are designed to increase youth
and family resilience to the risk factors associated with gang
joining [19].

Our goal in this study is to use several mathematical tools
to analyze repeated measures of the YSET questionnaire and
evaluate impact of GRYD Prevention programming. We start
with Dynamic Mode Decomposition (DMD) [15], a data-
driven technique, to model the dynamics of time series data.
DMD is closely related to the Koopman Operator [12], [16],
which approximates a high dimensional nonlinear system into
an infinite dimensional linear system. The DMD analysis
suggests that GRYD Prevention drives a decline in risk among
youth receiving services. By contrast, for a control group of
youth who are eligible to receive services, but fail to enroll,
DMD identifies an increase in risk over time.

We augment these observations using difference-in-
differences (DID) analysis of the same data [22]. DID lever-
ages the control group to model what would have happened if
the treatment group had not in fact undergone treatment. We
obtain statistically significant results from the DID analysis
and conclude that the effects of GRYD Prevention are causal.
We are able to mathematically connect the results of DMD
and DID and establish the conditions under which differences
in the leading eigenvalues obtained from DMD are sufficient
to reject the null hypothesis that treatment has no effect. This
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result suggests that DMD may be further developed for causal
analysis.

We also perform factor analysis [17] to understand what
latent attitudinal traits affect answers to the questionnaire.
We measure the effectiveness of GRYD Prevention on each
factor that emerges from the analysis. We observe that GRYD
is most effective in mitigating negative peer obedience and
least effective in reducing the willingness to use violence for
self defense. Using DID, we further investigate the best way
to categorize questions. Some but not all questions in factor
categories yield negative coefficients in the DID analysis,
which suggests the questions designed by GRYD follow a
range of different trends under treatment.

The rest of the paper is organized as follows. In Section II,
we describe the dataset in more detail. Section III focuses on
the theory and results of DMD as it pertains to the YSET data.
We conduct causal inference via DID in Section IV, followed
by an analysis of the connection between DMD and DID
in Section V. In Section VI, we present the results obtained
by factor analysis that determine which groups of questions
are impacted the most/least by GRYD. We conclude with a
summary of the main results.

II. YSET DATA

While many of the services provided by GRYD could be
beneficial to all youth, the primary goal of GRYD Prevention
is to help youth at risk of becoming involved with gangs
build resilience. The YSET questionnaire is the primary tool
used by GRYD to assess risk and determined eligibility for
services. The YSET consists of 104 questions divided into
nine different domains corresponding to individual, family
and peer risk factors. Risk for any one youth is evaluated
relative to threshold measures established in earlier validation
studies [6], [7]. Specifically, if the sum of question scores in
a target domain exceeds a threshold, the overall risk score is
increased by 1. Individuals with a risk score of 4 or higher
are eligible for secondary prevention (SP) services, the full
treatment program. Youth with risk scores between 2 and 3
receive partial services referred to as primary prevention (PP).
Youth with risk scores below 2 are considered ineligible.

Youth who are eligible and choose to enroll in SP or PP
receive services for approximately six months and then retake
the YSET. If their risk scores from the retake exceed the
established thresholds, youth may continue to receive services,
otherwise they “graduate” from GRYD Prevention. YSET
instances are labeled as Y1 for the first intake test for all youth
who are referred to GRYD Prevention. Retests for youth who
enroll in services are labeled as R1, R2, ..., Rn, though very
few youth remain in services beyond two cycles. Finally, the
label Y2 is used for youth who completed a Y1 intake test,
were eligible for services but, for one reason or another, did not
enroll in services. These youth were then referred to GRYD for
a second time and completed a new intake YSET. Critically,
youth who have only Y1 and Y2 results did not receive any
Prevention services, though they were eligible after completing
the Y1 intake questionnaire. Assuming that the reasons for

Table I
NUMBER OF CLIENTS IN EACH SUBSET OF THE YSET DATA.

Both PP and SP SP only PP only
Y1-Y2 70 46 24
Y1-R1 6865 3873 2992
R1-R2 2149 1737 412
Y1-R2 2149 1737 412

not enrolling were random, these youth form a proper control
group for comparison with youth who did enroll. To support
comparison, we further classify Y1-Y2 youth into SP and PP
based on their risk scores computed in their first intake test.
These are the treatment groups the control youth would have
entered had they enrolled in services. Table I shows the sample
sizes for youth falling into each treatment and control group
category.

A. Data Organization

We focus on six out of the nine domains in the YSET.
These categories contain Likert-scale questions relating to
antisocial tendencies, weak parental supervision, impulse risk
taking, guilt neutralization, negative peer influence, and peer
delinquency [7]. There are 31 questions in total, each scored
on a 1-5 scale with larger values corresponding to higher risk.
Without loss of generality, we normalize each response onto a
0-1 scale. Other domains in the YSET data are excluded from
analysis as the questions are either binary true/false, or free
response.

As mentioned above, we label the initial intake question-
naire as Y1, for both treatment and control groups. Every
successive retake for the treatment groups are labeled as Ri,
i ∈ Z+. A second intake questionnaire by eligible youth who
do not enroll is labeled as Y2. We arrange the responses to
the intake and each retake questionnaire into a matrix. Each
row of a matrix corresponds to a question and each column
of the matrix corresponds to an individual’s responses to the
questionnaire.

In a previous paper [21], the authors applied DMD to an
analogous dataset collected for GRYD Intervention Family
Case Management (FCM) youth (ages 10-15) and young adults
(ages 15-25) who were gang involved. Youth referred to
GRYD Prevention may be at risk of gang involvement, but
are not gang involved [19]. Several DMD variants, including
Exact DMD [20], DMD with control [13], Consistent DMD
[2], were investigated in [21], all confirming a decay in risk
factors associated with gang involvement. The focus here on
youth at risk of gang joining, complements this prior work and
underscores the comprehensive nature of GRYD programming.

III. DMD ANALYSIS

We aim to analyze the effectiveness of GRYD Preven-
tion services via DMD [20]. We start with the Koopman
operator [11], which provides the theoretical basis for DMD
analysis. Consider a discrete-time dynamical system

xk+1 = f(xk), (1)
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where xk, defined on a smooth manifold M, is a state variable
at the discrete time k and f : M → M represents the
dynamics. In our problem setting, x can be regarded as an
individual client of GRYD Prevention. The Koopman operator
K is an infinite-dimensional linear operator that acts on all
observable functions g : M → C so that

Kg(x) = g ◦ f(x). (2)

Denote φj(x) as a Koopman eigenfunction with correspond-
ing eigenvalue λj that satisfies

Kφj = λjφj . (3)

By convention, we assume the magnitude of eigenvalue λj
is in descending order; i.e., |λ1| ≥ |λ2| ≥ · · · . A vector of
observables (questionnaire scores in our case) g can be written
in terms of Koopman eigenfunctions

g(x) =


g1(x)
g2(x)

...
gp(x)

 =

∞∑
j=1

φj(x)vj , (4)

where vj is called the jth Koopman mode. It follows from (2)
and (4) that

Kg(x) = K
∞∑
j=1

φj(x)vj =
∞∑
j=1

λjφj(x)vj . (5)

As a result, future observables g(xk+1) can be obtained by

g(xk+1) = g ◦ f(xk) = Kg(xk) =
∞∑
j=1

λjφj(xk)vj . (6)

For the response scores at two time points, we can arrange
each individual’s question scores as a column vector and
denote the resulting matrix at k = 0 (e.g., intake) by

X = [g(x(1)0 ), · · · , g(x(n)0 )] ∈ Rp×n, (7)

where p = 31 is the number of questions in total to be
considered and n is the number of individuals. Similarly we
denote the data matrix for the time k = 1 (e.g., retake) by

Y = [g(x(1)1 ), · · · , g(x(n)1 )] ∈ Rp×n. (8)

DMD approximates the Koopman eigenvalues by finding a
matrix A such that

g(x(ℓ)1 ) = Ag(x(ℓ)0 ), ∀ℓ = 1, · · · , n. (9)

Or simply Y = AX using the matrix notation.
The following theorem guarantees that the eigenvalues of

A are equivalent to Koopman eigenvalues under certain con-
ditions.

Theorem 1. Let φ be an eigenfunction of K with eigenvalue
λ. If X defined in (7) is full rank and there exists a vector
w = [w1, · · · , wp]

T such that

φ(x) = w1g1(x) + · · ·wpgp(x) = wT g(x), (10)

then wTA = λwT , which means λ is a left-eigenvalue of A.

Proof. Applying the Koopman operator K on both sides of
(10) yields

Kφ(x) = wTKg(x).

Due to Kφ(x) = λφ(x) = λwT g(x), we obtain

wTKg(x) = λwT g(x). (11)

Considering x to be a data point x(ℓ)0 (ℓ = 1, · · · , n) in (11),
we have

wT g(x(ℓ)1 ) = wTKg(x(ℓ)0 ) = λwT g(x(ℓ)0 ),

where the first equality uses the relationship in (5). It further
follows from (9) that

wTAg(x(ℓ)0 ) = λwT g(x(ℓ)0 ).

As X is assumed to be full rank, then wTA = λwT .

Note that Theorem 1 originated from [11, Ch. 3], but with
a different assumption that X is full rank rather than w ∈
range(X). To make this paper self-contained, we include our
proof.

Remark 1. As indicated in Theorem 1, the Koopman eigen-
value λ is equivalent to the eigenvalue of the DMD matrix A if
the set of observables is sufficiently large such that the eigen-
function φ belongs to its span (i.e., φ ∈ span{g1, · · · , gp})
and the data is sufficiently rich (i.e., X is of full rank).

Given two data matrices X and Y , the simplest method of
finding the matrix A from Y = AX is via the least-squares
(LS), i.e.,

Â = min
A

∥Y −AX∥2F ,

which has a closed-form solution,

Â = Y X†, (12)

where X† denotes pseudo-inverse of X . Due to various
nuisance factors (e.g., noise), the LS solution does not give
an exact fit, i.e., there exists an error term E such that

Y = ÂX + E. (13)

To compute DMD eigenvalues (also known as Koopman
eigenvalues), the Exact DMD algorithm [20] adopted a rank-
reduced singular value decomposition (SVD), which is partic-
ularly efficient when the state dimension p is large. Denote the
SVD of the matrix X = UΣV ∗, where U ∈ Cp×p, V ∈ Cn×n

are unitary and Σ ∈ Cp×n is a diagonal matrix. Given a preset
value r, reduced SVD approximates the matrix X by UrΣrV

∗
r ,

where Ur and Vr take the first r columns of U and V , respec-
tively, and Σr is an r × r diagonal matrix. The choice of r
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Algorithm 1: Exact Dynamic Mode Decomposition (DMD)
1 Input matrices X,Y ∈ Rp×n, and an integer r > 0
2 Compute the rank-reduced SVD of X = UrΣrV ∗

r

3 Define Ã = U∗
r Y VrΣ

−1
r

4 Compute eigendecomposition of Ã, i.e., ÃW = WΛ
5 DMD eigenvalues are defined by the diagonal entries of Λ

guarantees that Σr is invertible and hence the pseudo-inverse is
X† = VrΣ

−1
r U∗

r . As summarized in Algorithm 1, Exact DMD
computes Ã ∈ Rr×r as a low-dimensional representation of
Â using r most dominant eigenvalues/eigenvectors of Â.

As a data-driven method, DMD computes a finite approx-
imation of the Koopman operator and hence we only have
access to a finite number of eigenvalues λj in (6) rather than
infinite summation. It follows from an induction of (6) that

g(xk) =
p∑

j=1

λkjφj(x0)vj , (14)

which implies that the leading eigenvalue λ1 affects the overall
trend of the risk scores. In particular, |λ1| < 1 results in the
decay of g(xk) to zero as k → ∞, which can be interpreted as
risk reduction. On the contrary |λ1| > 1 causes the divergence
of g(xk), leading to the increase in the risks of joining gangs.
The smaller |λ1| is, the greater the decay.

We apply Exact DMD (Algorithm 1) to four pairs of the
YSET data, labeled by Y1-R1, R1-R2, Y1-R2, and Y1-Y2.
We limit ourselves to the setting of r = p since p = 31
in our case is computationally tractable. In other words, we
use a standard SVD and compute eigendecomposition of Â
completely rather than its lower-dimensional approximation.
We visualize the eigenvalues of the four data pairs obtained
by Exact DMD in Figure 1, in which x and y axes are real
and imaginary components, respectively. We first observe that
all the absolute leading (largest in magnitude) eigenvalues
have real components less than 1 except for Y1-Y2. According
to the DMD theory, the questionnaire scores of youth in
the SP and PP treatment groups are decreasing in the long
run. By contrast, the absolute leading eigenvalue of Y1-Y2
is about 1.10, indicating increase in risk as measured by
the questionnaire. The comparison of the leading eigenvalues
between treatment and control groups implies that GRYD
Prevention services are effective at reducing risk. Moreover,
the real components of eigenvalues of the Y1-R1 group are
generally larger than those of R1-R2 and Y1-R2, suggesting
that the GRYD program is more effective over time. We also
notice in Figure 1 that the eigenvalues of Y1-Y2 are spread
out more than those of the other pairs. This may be due to the
small data size for Y1-Y2.

To gain further insights, we separate the data by youth in
SP and PP; i.e., receiving full and partial Prevention services,
respectively. The numbers of clients in each group are listed
in Table I. The leading eigenvalues of Exact DMD applied on
these subsets are recorded in Table II. The leading eigenvalues
for clients in SP are generally smaller than the ones for

Y1-Y2

Y1-R1

R1-R2

Y1-R2

Figure 1. Plots of eigenvalues obtained by Algorithm 1 on both PP and SP
data. Note that the leading eigenvalues are smaller than 1, except for Y1-Y2

(around 1.10).

Table II
THE ABSOLUTE LEADING EIGENVALUE PRODUCED BY EXACT DMD

UNDER DIFFERENT SCENARIOS.

Both PP and SP SP only PP only
Y1-Y2 1.10 1.14 NA
Y1-R1 0.88 0.84 0.98
R1-R2 0.85 0.83 0.96
Y1-R2 0.77 0.73 0.92

PP, suggesting that secondary prevention leads to a greater
decrease in risk scores than primary prevention.

IV. CAUSAL INFERENCE

In this section, we investigate the causal relationship be-
tween enrollment in Prevention services and the decrease in
questionnaire scores. The key challenge of any observational
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study is that it is impossible to know how a subject would have
responded had they exposed (or not exposed) to treatment. We
only ever observe one or the other potential outcome [23].

Here we apply quasi-experimental difference-in-differences
(DID) analysis to compare the outcomes of groups subject to
different treatment conditions at different times. DID parti-
tions confounding variables into two categories, namely time-
dependent and group-dependent effects. As long as time-
dependent effects are the same across groups and group-
dependent effects remain fixed over time, it is possible to
estimate the effect of treatment [4], [9], [22].

We focus on the simplest DID setting with two groups
(control and treatment) and two time points (T = 0, 1) that
best matches our available data. Specifically, we use the risk
scores from (pre-treatment) intake tests (T = 0) and (post-
treatment) retake tests (T = 1) for both those who were
enrolled in the GRYD Prevention programming (e.g., Y1-R1,
SP) and those who were not (e.g., Y1-Y2, SP). Define G to be
the group indicator, where G = 0 refers to the control group
of youth who were eligible for services but did not enroll
and G = 1 for the treatment group who did enroll. Finally,
define D = G× T to be the indicator variable identifying the
treatment effect. That is, D = 1 only for those individuals who
were enrolled in GRYD Prevention Services G = 1 during the
post-treatment period T = 1.

DID can be expressed as linear regression model of cu-
mulative risk scores, denoted by Z, with respect to three
independent factors T,G,D. The cumulative risk scores are
calculated as the sum of each individual question score in the
YSET data. Let t, g,d, z be vectors values of T,G,D,Z for all
youth. Mathematically, the DID linear regression model can
be expressed as

z = β0 + β1g + β2t + β3d + ϵ, (15)

where β0, β1, β2, β3 are scalar coefficients and ϵ is an error
term. Coefficient β1 accounts for the difference between
groups (present when G = 1 and absent when G = 0); β2
accounts for differences over time (present when T = 1 and
absent when T = 0). Finally, β3 accounts for differences
attributed to the treatment effect. Specifically, β3 < 0 implies
that GRYD Prevention services are causally responsible for
the decrease in risk. We estimate (15) using linear model
estimators in the base R package.

Table I shows the number of individuals falling into treat-
ment (Y1-R1) and control (Y1-Y2) groups. Table III shows the
estimated coefficients for SP and PP separately and combined.
The three partitions consistently show that β̂3 is negative, and
a causal relation is observed for the SP group but not for
the PP group. That is, relative to eligible youth who do not
enroll in Secondary Prevention Services, those who do see
significant reductions in risk. Table III also suggests that for
both SP and PP youth, group-based and time-based factors
exert non-significant influence on risk. Overall, the conclusion
is that GRYD Secondary Prevention services lead to significant
decreases in risk.

Table III
RESULT OF DID ON CUMULATIVE RISK SCORES

Secondary Prevention Estimate p value t value
β̂0: Intercept 14.41 <0.001 25.31
β̂1: Group 0.31 0.58 0.55
β̂2: Time 1.53 0.06 1.90
β̂3: Treatment -4.98 <0.001 -6.15

Primary Prevention Estimate p value t value
β̂0: Intercept 7.34 <0.001 8.82
β̂1: Group 0.61 0.46 0.73
β̂2: Time 1.53 0.19 1.30
β̂3: Treatment -1.34 0.26 -1.13

Full Data Estimate p value t value
β̂0: Intercept 11.99 <0.001 21.12
β̂1: Group -0.21 0.71 -0.37
β̂2: Time 1.53 0.06 1.91
β̂3: Treatment -3.40 <0.001 -4.21

In addition to cumulative risk score, we applied DID to
each YSET question independently. Here we look at SP data
only. The resulting β̂3 values are presented in Figure 2. All β̂3
values are negative and the estimates for 27 out 31 questions
yielded p-values less than 0.05.

V. CONNECTING DMD AND DID

In Sections III and IV we presented evidence that GRYD
Prevention reduces risk for youth receiving services. Whereas
DID is a common “work horse” for making causal inferences,
DMD typically is not. In this section, we reveal the equiva-
lence between these two models under certain assumptions.
Our conclusion is that if the leading eigenvalue of DMD
for the control group is larger than the leading eigenvalue
for the treatment group by a certain critical value, then the
corresponding treatment coefficient β̂3 in DID will be negative
and statistically significant. We validate this claim empirically
on simulation datasets.

We reorganize the response vector z in (15) as the con-
catenation of 4 subvectors zgt, each denoting the response
variable of group g at time t. Specifically, vectors z00, z01 are
the response variables of the clients in Group 0 (control group)
at Times 0 and 1; both are of length n. Similarly, z10, z11 as
response variables of the clients in Group 1 (treatment group)
at Times 0 and 1, both are of length m. In other words, z can
be represented as

z =


z00
z01
z10
z11

 .
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Figure 2. Result of DID on Question Scores

Then the DID model (15) can be written as z = Wβ + ϵ,
where β = (β0, β1, β2, β3)

T and

W =


1n 0n 0n 0n

1n 0n 1n 0n

1m 1m 0m 0m

1m 1m 1m 1m

 .

The ordinary least squares (OLS) estimator of β is given
by

β̂ = (WTW )−1WT z.

After calculation, we obtain the closed-form solution

β̂ =


β̂0
β̂1
β̂2
β̂3

 =


z00

z10 − z00
z01 − z00

(z00 − z01)− (z10 − z11)

 , (16)

where zgt is average value of the vector zgt.
Now we consider two pairs of matrices: (Xt, Yt) for the

treatment group and (Xc, Yc) for the control group; each pair
containing two data matrices collected at two time points, i.e.,
(7) and (8).

As z00 is a vector of cumulative risk scores for clients in
Xt, we can represent it as z00 = XT

t 1p, where 1p denotes
the all-one column vector of length p. Then the average of
z00 ∈ Rn, z00 can be represented as z00 = 1

n1TpXt1n.
Similarly we have

z00 =
1

n
1Tp Yt1n, z01 =

1

n
1T
p Yt1n,

z10 =
1

m
1T
pXc1m, z11 =

1

m
1Tp Yc1m.

(17)

It follows from the DMD analysis (13) that there exist two
matrices At, Ac such that Yt = AtXt +Et and Yc = AcXc +

Ec, where Et, Ec are the error terms. We assume At, Ac are
full rank and hence we can denote the eigenvalue decom-
position of At by At = ΦΛΦ−1, where Φ = [ϕ1, · · ·ϕp]
is an invertible matrix composed of normalized eigenvectors
and Λ is a diagonal matrix with eigenvalues {λ1, · · · , λp} on
the diagonal. By convention, we assume the eigenvalues are
sorted in a descent order in the real components. Similarly
we have the eigendecomposition of Ac = ΨΘΨ−1, where
Ψ = [ψ1 · · ·ψp] and Θ = diag[θ1, · · · , θp].

As both Φ and Ψ are invertible, we define Zt := Φ−1Xt and
Zc := Ψ−1Xc, which implies that Xt = ΦZt and Xc = ΨZc.
Combining (16) and (17) with eigendecompositions of At, Ac,
we can express β̂3 by

β̂3 =
1

n
1Tp (Xt − Yt)1n − 1

m
1Tp (Xc − Yc)1m

=
1

n
1Tp (ΦZt − ΦΛZt − Et)1n

− 1

m
1Tp (ΨZc −ΨΘZc − Ec)1m

=
1

n
(ΦT 1p)T (Id − Λ)(Zt1n)−

1

m
(ΨT 1p)T (Id −Θ)(Zc1m)

− 1

n
1TpEt1n +

1

m
1T
pEc1m,

(18)

where Id denotes the identity matrix. As the matrix Id −Λ is
diagonal, we can rewrite
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Simulated Y1-Y2

Figure 3. Plots of eigenvalues obtained by Algorithm 1 on simulated Y1-Y2

data. The leading eigenvalue is 1.04.

1

n
(ΦT 1p)T (Id − Λ)(Zt1n)

=
1

n

p∑
i=1

1Tp ϕi(1− λi)Zt[i, :]1n (Zt[i, :] is the i-th row of Zt)

=
1

n

p∑
i=1

1Tp ϕi(1− κ+ κ− λi)Zt[i, :]1n

=
1− κ

n

p∑
i=1

1Tp ϕiZt[i, :]1n +
1

n

p∑
i=1

1Tp ϕi(κ− λi)Zt[i, :]1n

=(1− κ)z00 +
1

n
1T
p ϕ1(κ− λ1)Zt[1, :]1n

+
1

n

p∑
i=2

1Tp ϕi(κ− λi)Zt[i, :]1n,

which holds for any arbitrary positive real number κ.
Figure 1 and Table II suggest that except for the Y1-Y2

group, the leading eigenvalues of both At and Ac are real-
valued, while their non-leading eigenvalues are clustered and
significantly smaller than 1. We can choose a proper κ such
that |κ − λi| ≪ 1 − κ for i = 2, · · · , p. As a result, we can
treat 1

n

∑p
i=2 1T

p ϕi(κ−λi)Zt[i, :]1n as an error term, denoted
by et. Similarly, we can have 1

m (ΨT 1p)
T (Id −Θ)(Zc1m) =

(1−κ)z10+ 1
m1Tp ψ1(κ−θ1)Zc[1, :]1m+ec with an error term

ec. Considering both treatment and control groups, a good
choice of κ is the mean of the real components of the non-
leading eigenvalues; i.e., κ =

∑
i>1(Re(λi) + Re(θi))/(2p−

2). Ignoring these small error terms (Et, Ec, et, ec), we get an
approximation of (18) as

β̂3 ≈(1− κ)(z00 − z10) +
1

n
1T
p ϕ1(κ− λ1)Zt[1, :]1n

− 1

m
1Tp ψ1(κ− θ1)Zc[1, :]1m.

(19)

We would like to demonstrate the accuracy of this ap-
proximation (19) using simulated Y1-Y2 data, as the original
Y1-Y2 group has a limited number of participants, resulting
in more scattered DMD eigenvalues. According to Table III,
Y1-Y2 shows similar behavior to Y1-R1, so we draw 1, 000
samples randomly from the intake responses of the Y1-R1

group and take them as the intake responses of the simulated
Y1-Y2 group. We then predict the retake responses based on the

Table IV
RESULT OF DID WITH SIMULATED DATA FOR Y1-Y2 GROUP

Full Data Estimate p value t value
β̂0: Intercept 10.02 <0.001 68.77
β̂1: Group 1.75 <0.001 11.24
β̂2: Time 3.02 <0.001 14.67
β̂3: Treatment -4.89 <0.001 -22.16

probability distribution of each score of each question in the
actual Y1-Y2 group. The DMD eigenvalues of the simulated
Y1-Y2 dataset are presented in Figure 3, which are much more
clustered than the ones of the original Y1-Y2 shown in Figure 1.
The DID result on the simulated dataset is shown in Table IV.
Using the full data of Y1-R1 and simulated data of Y1-Y2,
we calculate the right-hand side of (19) to be −4.56, which
is a good approximation of the actual value of −4.89, as
shown in Table IV. This result suggests that (19) provides
a reasonable approximation to the estimated β̂3, provided
that the DMD algorithm for finding the linear mapping is
sufficiently accurate (i.e., ∥Ec∥ and ∥Et∥ are small) and the
real components of non-leading eigenvalues are sufficiently
close to zero. To the contrary, when these two conditions are
not satisfied as in the case using the actual Y1-Y2 data, the
calculation of β̂3 using (19) is 6.03, quite far from the value
estimated via DID of −4.89.

If the treatment and control groups are sufficiently similar
in risk scores at pre-treatment (i.e., well-matched), imply-
ing that z00 = z10, then we can compute the following
approximations: 1

n1Tp ϕ1Zt[1, :]1n ≈ 1
m1Tpψ1Zc[1, :]1m, and

1
n1T

pE11n ≈ 1
m1T

pE21m. As a result, (19) can be simplified
as

β̂3 ≈ (θ1 − λ1)C, (20)

where C = 1
n1T

p ϕ1Zt[1, :]1n = 1
m1Tpψ1Zc[1, :]1m > 0.

The approximation in (20) reveals a key connection between
DMD and DID. That is, the sign of the treatment coefficient
in DID is largely affected by the difference of the two leading
eigenvalues from DMD for treatment and control groups. If the
leading eigenvalue of DMD applied to the treatment group is
smaller than the one for the control group, then one can expect
β̂3 < 0 in the DID analysis. For example, for the full data,
the leading eigenvalue of the simulated control group (1.04 in
Figure 3) is larger than the one of the treatment group (0.88 in
Table II), so θ1 < λ1, and thus β̂3 < 0. By contrast, applying
DID to the full dataset gives β̂3 = −4.89 < 0, confirming this
result.

This connection between DMD and DID can be made
stronger. Specifically given relevant datasets, we can estimate
an upper bound of the difference between the two leading
eigenvalues, under which the null hypothesis test H0 : β3 = 0
would be rejected. It follows from multiple linear regres-
sion theory [1] that the normalized coefficient β̂3 follows t-
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Table V
CATEGORIES OF THE YSET QUESTIONNAIRE

Label Category
A Antisocial Tendencies (A.T.)
B Weak Parental Supervision (W.P.S.)

DE Impulsive Risk Taking (I.P.T.)
F Guilt Neutralization (N.)
G Negative Peer Influence (N.P.I.)
H Peer Delinquency (P.D.)

Table VI
THE LEADING EIGENVALUES PRODUCED BY EXACT DMD ON DIFFERENT

CATEGORIES.

A.T. W.P.S I.R.T. N. N.P.I. P.D.
Y1-R1 0.86 0.80 0.87 0.90 0.84 0.90
R1-R2 0.82 0.73 0.82 0.85 0.80 0.82

distribution with degree of freedom 2n+ 2m− 4, i.e,

β̂3

Se

√
V44

∼ t2n+2m−4,

where Se is the mean square error (i.e., S2
e = eTe/(2m+2n−

4) with e = z − ẑ = z −W β̂) and V44 is the (4,4)-entry of
the matrix V = (WTW )−1. There is a closed-form formula
that gives V44 = 2

n + 2
m . For Se, Equation (16) yields

S2
e = [(n− 1)Var(z00) + (n− 1)Var(z01)+

(m− 1)Var(z10) + (m− 1)Var(z11)]/

(2m+ 2n− 4).

(21)

By using PP, SP, and full data, we can calculate the variances
of z00, z01, z10, and z00, leading to an estimate of Se.

The t-score corresponding to the 0.05 p-value is approxi-
mately ±1.96. As β3 is negative, it is required that

β̂3

Se

√
V44

< −1.96, (22)

to reject the null hypothesis H0. Combining with (20), we
can obtain an upper bound on the difference λ1 and θ1 to
reject H0. We still take the full data with simulated control
group as an example. We get C ≈ 18, Se ≈ 5, V44 ≈ 0.0023.
Consequently if λ1−θ1 > 0.026, then the hypothesis test H0 is
highly likely to be rejected and a causal relation is established.
Note that this threshold value 0.026 is specific to this dataset,
as C, Se, V44 all depend on the datasets that we use.

VI. FACTOR ANALYSIS

Finally, we investigate the effectiveness of GRYD Preven-
tion conditioned on the groups of attitudinal traits that the
YSET questionnaire seeks to measure.

We start with six categories originally designed by GRYD,
labeled as A, B, DE, F, G, and H. As summarized in Table V,
each category focuses on a certain risk domain.

To understand which domains GRYD affects the most, we
apply Exact DMD on each group of questions and examine

the leading eigenvalues. The smaller the leading eigenvalue,
the more rapidly the risk scores in that domain decrease.

Table VI presents the leading eigenvalues for two time
periods: Y1-R1 concerns clients who receive GRYD Prevention
services for six months, while R1-R2 concerns the same
clients who received a second phase of services lasting another
six months. The leading eigenvalues show that GRYD is most
effective in increasing the importance of parental supervision.
Table VI also reveals that GRYD is less effective in lowering
risk associated with guilt neutralization1.

The partition used by GRYD to group questions in the
YSET is based on validation research from more than a decade
ago [7]. Given the large amount of data now available to
GRYD, we can investigate whether alternative groupings of
questions are justified. Here we look to data-driven factor
analysis (FA) [17] the goal of which is to find a small number
of latent factors that account for responses on the observed
data.

To determine the optimal number of factors, we use the
R package nFactors that contains three methods: Kaiser’s
rule [10], parallel analysis [8] and optimal coordinates [14],
returning 9, 8, 8 respectively as the optimal number of factors
for the Y1 data. As Kaiser’s rule has a known tendency to over-
extract factors [3], we choose 8 as the optimal number of latent
variables and employ the R package factanal for factor
analysis on the Y1 data. We also allow correlation in these
factors by using the optional parameter rotation = “promax”,
as it is reasonable to assume that latent factors in our data
are correlated (for example, weak parental supervision should
be correlated with peer delinquency). Our factor analysis
satisfies all five criteria for a simple data structure argued by
Thurstone [18] (Figure 4).

Our FA is consistent with the structure used by GRYD
for domains B (Weak Parental Supervision), DE (Impulsive
Risk Taking), and H (Peer Delinquency). The FA groups
questions A1-A5 (Antisocial Tendencies) but places question
A6 together with F23, F24, which we identify as attitudes
towards “stealing.” Factor 7 may be interpreted as “Violence
for Defense” due to the prominence of F25 (“It is OK to beat
people up if they do something to me first”) and F26 (“It is
okay to beat people up if I do it to stand up for myself”).
Questions grouped in Factor 8 are associated with “Negative
Peer Obedience” (Questions G27, G28), while Factor 4 is
dominated by Questions G29-G31, regarding “Negative Peer
Association.” In summary, we note that GRYD’s choices in
grouping the questions are mostly supported by a data-driven
FA approach except for the F (Guilt Neutralization) and G
(Negative Peer Influence) categories.

Similarly to Table VI, we apply the Exact DMD algorithm
to each group of questions suggested by FA and record the
leading eigenvalues in Table VII. Note that the factors S.A.,
V.D., N.P.O. and N.P.A. are discovered by FA, thus absent in

1Two sample questions in the Neutralization category are: “Is it okay for
me to lie to someone if it will keep me from getting into trouble with him
or her” and “Is it okay to steal something from someone who is rich and can
easily replace it.”
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Figure 4. Loading coefficients for applying factor analysis on the Y1 data,
showing the grouping structure is simple.

Table VII
THE LEADING EIGENVALUE PRODUCED BY EXACT DMD ON EACH
FACTOR DETERMINED BY FACTOR ANALYSIS. THE NEW FACTORS

(INDICATED BY ∗) ARE: S.T. : STEALING ATTITUDES; V.D. : VIOLENCE
FOR DEFENSE; N.P.O. : NEGATIVE PEER OBEDIENCE; N.P.A.. :

NEGATIVE PEER ASSOCIATION;

A.T. W.P.S. I.R.T. S.A.∗ V.D.∗ N.P.O.∗ N.P.A.∗ P.D.
Y1-R1 0.86 0.80 0.87 0.81 0.92 0.76 0.83 0.90
R1-R2 0.82 0.73 0.82 0.79 0.87 0.77 0.77 0.82

Tables V-VI. Comparing Tables VI and VII, we see that the
questions in the original F and G categories do not behave in
the same way. Specifically for Category F, GRYD is the least
effective on the questions regarding Violence for Self Defense,
while the leading eigenvalue associated with Stealing Attitudes
is in line with the other factors. We can further differentiate the
questions in Category G, as Negative Peer Obedience seems to
decrease faster than Negative Peer Association. It seems that
GRYD is most effective in decreasing the youths’ obedience
to friends that affect their lives negatively. On the other hand,
GRYD seems to have a weaker impact on the attitudes towards
the use of violence for self-defense.

FA suggests that the F and G categories in the YSET could
be fine-tuned, since the questions in these original groups do
not seem to measure the same latent construct.

VII. CONCLUSIONS

We analyzed temporal changes risk measures for youth
referred to GRYD Prevention program, a civilian led approach
to helping youth at risk of joining gangs. Using data from the
YSET questionnaire administered by GRYD for determining
both eligibility and progress in the program, we studied
the spectra of the finite dimensional approximations of the
Koopman operator obtained by the Exact DMD algorithm.
We demonstrated empirically that the leading eigenvalue for

two different treatment groups was positive and smaller than
1 and was larger than 1 for the one control group. The
results show that questionnaire scores tend to decrease for
the youth who are enrolled in GRYD and to increase for
those who are not. The data also show a larger decrease for
GRYD’s Secondary Prevention youth (with full Prevention
services) compared with Primary Prevention youth (with par-
tial services), as expected. Furthermore, we performed DID
analysis to explore the causal relationship between GRYD
Prevention services and the decrease in questionnaire scores.
We established empirically a connection between DID and
DMD, specifically regarding the leading eigenvalues and the
probability to reject the null hypothesis. Finally, we examined
a factor analysis of the original questions, suggesting that the
F and G domains should be further split into two categories
each, as the factors that change the most and the least were
hidden with the original partition of the questions given by
GRYD.
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