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Abstract 
 
Questions about the compositional mixture of crime types have not featured prominently in 
studies of the geography of crime. We develop an extension of the passive sampling model of 
crime diversity to examine whether similarities or differences in crime problems between places 
can be attributed to stochastic processes. The model provides formal expectations for three 
comparative measures of crime composition similarity between places of any area size (i.e., 
shared crime types, unshared crime types, Jaccard similarity). The model is then tested against 
observed crime patterns in St. Louis, Missouri during 2017 (N = 46,855 crimes across 161 
unique offense types). The passive sampling model fits observed crime patterns with limited 
qualifications, implying that stochastic processes may play a substantial role in why places have 
dissimilar crime composition. Places may display divergent crime diversity patterns despite a 
common underlying crime generating process. Differences are largely due to the occurrence of 
uncommon, though not exceptionally rare crime types. This suggests that crime prevention 
strategies may be better suited for identifying general crime hot spots of all offenses, rather than 
focusing on hot spots of specific offense types. 
 
 
Keywords: environmental criminology, crime and place, crime diversity, Jaccard similarity, 
passive sampling 
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1 INTRODUCTION 

Questions regarding the compositional mixture of crime types across different places 

have not featured prominently in geographic criminology. Most studies of the geographic 

patterning of crime have either focused on single crime types (Hipp, 2016), or closely related 

crime types lumped into aggregate categories, such as violent or property crime (Schreck et al., 

2009). Few studies have sought to understand why different crime types occur together and 

whether there is some mechanistic basis for patterns of crime diversity (Brantingham, 2016; 

Khorshidi et al. 2021; Quick et al., 2018; Schreck et al., 2009).  At present it is not at all clear 

why some places support a limited set of crime types and others a diverse array. Possible 

explanations are that crime diversity is tied to characteristics of environmental settings 

(Brantingham & Brantingham, 1995; Brantingham & Brantingham, 1981, 1984), opportunities 

(Cloward & Ohlin, 1960), or social structures (Ha & Andresen, 2017). In any case, the working 

hypothesis of contemporary theories is that social-environmental conditions constrain the types 

of crime that can occur (Felson & Clarke, 1998; Wilcox & Cullen, 2018; Wilcox et al., 2003). 

An intuitive example is the one-to-one match between commercial burglary and commercial land 

use, whereby this offense type requires the specific environmental condition. This paper 

examines the argument that these environmental constraints are over-emphasized in the 

literature, and adds to recent work suggesting a weak link between crime diversity and social-

environmental conditions (Brantingham, 2016; Lentz, 2018).  

Crime pattern theory provides a general theoretical characterization of the ways in which 

place affects specialization. Environments emit both general and specific cues that influence 

offender decisions (Brantingham & Brantingham, 1993). General cues signal to offenders that a 

given place supports many different types of crime. Specific cues signal that a place supports a 
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particular type of crime. Environments dominated by general crime cues should present high 

crime diversity. Environments dominated by one specific crime cue should present low crime 

diversity. Specific crime cues will drive high crime diversity only to the extent that those cues 

are also rich in that place. Indeed, if there is a one-to-one relationship between specific cues and 

crime types, then crime richness will directly parallel cue richness (Brantingham, 2016; 

Khorshidi et al. 2021). Crime pattern theory therefore suggests that the crime diversity at a place 

is a proxy for whether place-based cues are crime general (universal) or crime specific, and 

whether the environment is dominated by general or specific cues. 

Inherent to the study of crime diversity is the notion that places can be compared to 

reveal differences in the underlying processes responsible for crime composition. To date, little 

work has been done to develop a formal comparative approach to crime diversity across places. 

Yet, the implicit operating assumption is that similarity in crime diversity across places indicates 

a common set of underlying crime generating processes (Weisburd et al., 2016; Weisburd, Groff, 

& Yang, 2012). Places that are different in crime diversity should also have divergent underlying 

crime generating processes. Such inferences about crime diversity and place, however, may not 

be this straightforward. Prior work suggests that crime diversity in a single place at any spatial 

scale, is largely indistinguishable from a passive sampling process that randomly assigns crimes 

to places based only on their global frequency (Brantingham, 2016; Lentz, 2018).  The 

implication for comparative criminology is that differences in crime diversity between places 

may not reflect different underlying crime generating processes, but rather the operation of 

stochastic forces. To be blunt, perhaps the characteristics of “place” do not matter all that much 

for crime diversity.  If this provocative idea were to prove even partially correct it would have 
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implications for the design and implementation of crime prevention strategies, as we discuss later 

in the paper.  

 Additionally, issues of scale animate current crime and place research (Boessen & Hipp, 

2015; Gerell, 2017; Haberman et al., 2017; Hipp & Williams, 2020; Hipp et al., 2017; Taylor, 

2015; Weisburd, 2015). Micro-geographic places should present low crime diversity simply 

because their size can support only a narrow range of environmental settings. If micro-

geographic locations indeed host different crime types then we might also feel safe in asserting 

that the crime problems in two places are distinct, reflecting divergent crime-generating 

processes. Conversely, meso- and macro-geographic scales of observation might be expected to 

present considerable crime diversity. If high diversity locations host many of the same crime 

types then we might also feel safe in asserting that their crime problems are largely the same, 

reflecting similar underlying processes. 

Few studies to date have directly investigated the nature of crime diversity at place. 

Weisburd et al. (1992) assessed pairwise correlations among unique crime types to compare their 

spatial distributions at the street-segment level. Their results show a mixture of nonsignificant 

(46 percent), weak (34 percent), and strong (20 percent) associations among unique crime types, 

implying a mixture of general and specific processes. More recently, Quick and Brunton-Smith 

(2018) estimated multivariate spatial models to partition residuals into general and crime-type 

specific variation at a micro spatial scale. Similar to Weisburd et al. (1992), they found evidence 

for a mixture of general and specific influence on crime patterns. Their analysis presents a more 

rigorous test of these processes, but only at one spatial scale and for only four crime types (i.e., 

burglary, robbery, vehicle crime, violent crime).  
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Quick et al. (2018) review alternative methods to assess crime and place specialization in 

more limited ways. Most previous studies use some type of cluster detection method, such as the 

location quotient (Andresen, 2007; Brantingham & Brantingham, 1998), spatial point pattern test 

(Andresen, 2009; Wheeler et al., 2018 2018), or hot spot identification (Haberman, 2017) to 

compare crime patterns disaggregated by offense type. Another alternative is the use of 

regression analysis to compare effects of independent variables on crime patterns disaggregated 

by type (Hipp, 2007; Roncek & Maier, 1991) or comparison of longitudinal trajectories by 

offense type (Andresen et al., 2017). All such methods are impractical for comparing many 

crime types simultaneously and do not accommodate a large range of spatial scales in the 

analysis.  

Brantingham (2016) took a different approach. Starting from first principles developed by 

Coleman (1981), the mean and variance in the number of unique crimes for an area of defined 

size is computed using only information about the global frequency of each unique crime type 

and the relative size of the area under observation. The model is completely neutral since the 

probability that a crime occurs in a given area is independent of both environmental 

characteristics (other than area size) and the specific type of crime. Surprisingly, this simple 

model predicted the qualitative relationship between increasing area size and increasing crime 

diversity, and it predicted the quantitative relationship with constant scaling. Brantingham (2016) 

concluded that geographic crime diversity has a large stochastic component.   

One important limitation of prior work is treating crime diversity as a meaningful 

measure without specific mention of the crime types involved. For example, one place with both 

robberies and assaults and another with burglaries and vandalism would both have a diversity 

measure of two unique crime types. In some sense, this is a valid aggregate that captures the 
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scale or magnitude of the problem in each place (albeit neglecting both crime frequency and 

harm). It is perhaps unfair, however, to say that the crime problems are equivalent. Very 

different responses may be warranted from a problem-oriented perspective (Braga & Weisburd, 

2010; Goldstein, 1990; Spelman & Eck, 1987). A comparative model is still needed that 

accounts for explicit similarities and differences in crime types between areas, yet also maintains 

the key features of the passive sampling model useful for hypothesis testing.  

In this study, we develop an extension of the passive sampling model of crime diversity 

to address whether similarities or differences in observed crime problems between places can be 

attributed to neutral, stochastic processes. The passive sampling model thus provides a null 

hypothesis for the comparative study of crime diversity across places across spatial scales. We 

test the comparative passive sampling model against crime patterns in St. Louis, Missouri during 

2017 (N = 46,855 crimes), and discuss how our findings inform crime prevention policy and 

future research moving forward.  

 

2 METHODS 

2.1 Model Specification  

A primary goal of this paper is to develop a comparative model for crime problem 

similarity between places. We focus here on the specific combination of unique crime types that 

occur in two locations under comparison, referred to as crime composition. Several indicators 

can be examined to compare the crime composition in different places. The number of shared 

crime types describes how much the crime problem in one place is similar to the type of problem 

in another place; the number of unshared crime types describes how much the crime problems 

are different. We can then use a normalized measure of similarity that relates the number of 
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shared crime types to the total number of unique crime types in both places, well-known in 

ecology as the Jaccard index of similarity (Jaccard, 1908; Real & Vargas, 1996).   

Fig. 1 uses a Venn diagram to illustrate how these different comparative measures are 

created for two hypothetical places, much like Chao et al. (2005).  Using notation from set 

theory, let 𝑆(") and 𝑆($) be the number of unique crime types occurring in places 𝑘 and 𝑙, 

respectively.1 Let 𝑆("$) be the number of unique crime types shared by places 𝑘 and 𝑙. Let 𝑆("⊝$) 

be the sum of the number of unique crime types in 𝑘, but not in 𝑙, and the number that are in 𝑙, 

but not in 𝑘. Thus 𝑆("⊝$) represents the number of unshared crime types.  Referring to Fig. 1, the 

number of unique crime types in place k is 𝑆(") = 5, while the number of types in place l is 

𝑆($) = 6.  The number of shared crime types is 𝑆("$) = 3, while the number of unshared crime 

types is 𝑆("⊝$) = 𝑆(") + 𝑆($) − 2 ∗ 𝑆("$) = 5. The total richness of both places combined is 

𝑆(") + 𝑆($) − 𝑆("$) = 8. The Jaccard index of similarity measures the proportion of the total 

number of unique crime types (total richness) shared by the two places, such that values range 

from ‘0’ (no shared types) to ‘1’ (all types shared). The value of the Jaccard index in Fig. 1 is 

𝐽 = &'()*+
,-,($	)/0'1*&&

= 2("#)

2(")32(#)42("#)
= 0.375. 

 

[Fig. 1 about here] 

 

Crime composition, and the related Jaccard index, has advantages over other metrics for 

comparing crime problems. Alternatives include a crime profile, which is a ratio of one crime 

type to another (Schreck et al., 2009) and crime richness, which is simply a count of unique 

 
1 The use of set theory notation is not to overcomplicate the model, but because later calculations of the mean and 
variance are more easily articulated using this notation style. 
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offense types (Brantingham, 2016). Crime profiles are limited to only two crime types, and crime 

richness does not account for qualitative distinctions among different types. Crime composition 

considers the specific combination of crime types that occur in a location, places no constraints 

on the number of types considered or their frequencies, and can be used at any spatial scale, 

thereby improving upon the limitations of prior methods.  

 Next we propose an extension to Brantingham’s (2016) passive sampling model of crime 

diversity as a baseline comparison for observed crime patterns . A complete explanation of the 

baseline passive sampling model can be found in Appendix A. Briefly, the probability p that a 

crime of type i is observed to occur in any given place k is equal to: 

 𝑝/ = 1 − (1 − 𝛼")1% (1) 
 

where α is the relative area size of place k (i.e., 𝛼" =
()*(	-5	"
,-,($	()*(

) and 𝑛/ is the known global 

frequency of crime type i in the jurisdiction. The probability that a crime occurs in a given place 

is affected only by the relative size of that place and the overall frequency of each crime type. 

 We now extend the passive sampling model to the comparison of two randomly sampled, 

non-overlapping places in terms of their crime problems. Our central question concerns how 

many crime types are shared among two sampled places under passive sampling conditions. 

Given equation (1), let 𝑝/
(") and 𝑝/

($) be the probabilities that least one instance of crime type i is 

observed independently in places 𝑟" and 𝑟$.  Assuming that regions 𝑟" and 𝑟$ are of identical size 

(i.e., 𝛼" = 𝛼$) and correcting for rare crime types that occur just once, the joint probability that 

at least one instance of crime type i is observed in both 𝑟" and 𝑟$ is then: 

 𝑝/
("$) = 𝑝/

(")𝑝/
($) = 1 − (1 − 𝛼)1% − (1 − 𝛼)1%46 + (1 − 𝛼)71%46  (2) 
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We can then use these probabilities to derive the mean (𝑠̅("$)) and variance (𝜎7("$)) in the 

number of crime types shared between two sampled places via the Binomial theorem (Coleman, 

1981). 

 
𝑠̅("$) =;𝑝/

(")𝑝/
($)

2

/86

= 𝑆 −;(1 − 𝛼)1% −;(1 − 𝛼)1%46
2

/86

2

/86

+;(1 − 𝛼)71%46
2

/86

 
(3) 

 

 

 
𝜎7("$) =;𝑝/

("$)𝑝/
("$)𝑞/

("$)𝑞/
("$)

2

/86

=;(1 − 𝛼)71%
2

/86

− 2;(1 − 𝛼)71%
2

/86

+;(1 − 𝛼)91%
2

/86

 

(4) 

 

The above quantities also allow us to compute summary measures of the unshared and total 

crime types in places 𝑟" and 𝑟$ under neutral conditions.  The mean number of unshared crime 

types is computed as 𝑠̅(") + 𝑠̅($) − 2𝑠̅("$), where 𝑠̅(") and 𝑠̅($) are the mean number of unique 

crime types in each region independent of the other (Appendix A). The total richness in the pair 

of places is computed as 𝑠̅(") + 𝑠̅($) − 𝑠̅("$). 

 We also compute the Jaccard index of similarity assuming passive sampling. The Jaccard 

index is used to characterize the degree of overlap between two binary vectors. Each entry in the 

two vectors records the presence or absence of a discrete entity such as species or crime type 

(Chao et al., 2005). When the two vectors have no entries in common the index is zero, when all 

the entries are shared in common the index is one. We seek the mean Jaccard index given 

repeated observations of paired places under passive sampling conditions. Using the above 

quantities, the mean Jaccard index is: 
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𝐽(̅"$) =

𝑠̅("$)

𝑠̅(") + 𝑠̅($) − 𝑠̅("$)
 

(5) 

 

The variance of the Jaccard index under passive sampling is: 

 

 
VAR[𝐽("$)] =

𝐽("$)B1 − 𝐽("$)C
𝑆 =

𝑠̅("$)B𝑠̅(") + 𝑠̅($) − 2𝑠̅("$)C
𝑆(𝑠̅(") + 𝑠̅($) − 2𝑠̅("$))7

 
(6) 

 

where 𝑆 is the total number of unique crime types observed in the entire jurisdiction.  

 

2.2 Data and Measures 

We now turn our attention to testing these theoretical expectations against observed crime 

data from St. Louis, Missouri.2 St. Louis is 66 square miles in size with a population of 320,000 

residents spatially segregated across racial lines (50 percent black, 43 percent white). The focus 

of this study is on crimes recorded by the St. Louis Metropolitan Police Department (SLMPD) 

during 2017.3 Excluded from analysis are any crimes that could not be geocoded to a location in 

the city.  

Crime classification is critical here, as our purpose is to examine comparative crime 

problems in terms of the types of crime that occur. The SLMPD classifies crime incidents using 

161 unique codes. While not all codes are equally different from one another, distinguishing 

crime events into many unique types is important for determining the potential role of 

opportunity constraints on the diversity of crime. The final 2017 sample for St. Louis includes 

46,855 crime incidents classified into S=161 unique crime types.  

 
2 Appendix C replicates the results in Los Angeles, CA as a first test of generalizability. 
3 The crime data are publicly available from SLMPD [https://www.slmpd.org/Crimereports.shtml]. 
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Fig. 2A shows the spatial distribution of 1,000 random selected crime incidents 

overlaying a point density map of all incidents to illustrate substantial spatial clustering. Fig. 3B 

shows a rank-frequency plot to describe the distribution of crimes across types. The x-axis in 

Fig. 3B ranks each crime type from the most frequent (rank=1) to the least frequent crime type 

(rank=S), while the y-axis is the log-frequency of each crime type. If incidents were equally 

distributed across crime types, the plots would make a nearly horizontal line across the graph. 

The plot in Fig. 2B, however, demonstrates that crime incidents are concentrated within types, 

with just a few common crime types accounting for the majority of incidents. Thus, crimes are 

concentrated both within places and within types.  

 

[Fig. 2 about here] 

 

We chose to aggregate crimes by randomly selecting crime locations and defining areas 

of a given buffer distance around each selected location so that each place is a circular area of 

fixed size. This allows us to adjust the buffer distance to create areas of any size. Arbitrary units 

may be more applicable for policy and practice than standard area units such as grid cells or 

census blocks because police may find it easier to target efforts at specific point locations rather 

than develop responses for entire areas. We therefore find this unit of analysis defensible 

theoretically and in terms of policy and practice. 

To select the sample for analysis, 1000 sites are randomly selected without replacement 

from the entire list of crime locations. Each place is determined by drawing a buffer distance 

around each selected site for 30 area sizes ranging from micro places (0.007 square miles) to 
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large areas (6.339 square miles).4 For each sampled site, a second site of equal size is randomly 

selected at least twice the buffer distance away from the first to ensure there is no spatial overlap 

within pairs. The crime types occurring within the buffer distance at both sampled sites are 

recorded, and this procedure is repeated for each spatial scale examined. All comparative metrics 

are recorded for each sampled pair. Note that high crime areas are sampled with greater 

probability than low crime areas. Whereas a spatially random sample might have been more 

representative of the city landscape, our strategy samples directly from the observed crime 

distribution. This is purposeful given that police often target resources toward high crime areas 

to achieve the greatest overall impacts, but also includes low crime places (albeit with lower 

probability). Our results are therefore more applicable to these high crime places than to low 

crime places that are rarely an enforcement priority.  

To summarize the observed patterns, the theoretical and empirical means and standard 

deviations are computed for each spatial scale and displayed graphically in relation to area size. 

The observed and theoretical values are presented in Appendix B for reference. Kolmogorov-

Smirnov D (Massey Jr, 1951) tests are used to detect differences between observed crime-area 

curves and the theoretical expectations. If significant differences exist, each value of the passive 

sampling model is multiplied by a constant factor such that the scaled theoretical expectation is 

statistically equivalent to observed values. These scaling constants measure the difference 

between the observed and theoretical values to quantify model fit. A constant equal to 1.0 

indicates no scaling is used. A value between zero and 1.0 indicates that the model underpredicts 

 
4 The area sizes used in this study are computed by increasing buffer size around sampled locations from 250 feet to 
7500 feet in increments of 250. The choice of scales ensures that the range of area sizes includes micro-places that 
fit the original definition of Sherman et al. (1989) as areas that can be fully seen by the human eye standing at one 
point location (250-500 feet in either direction), as well as large intracity areas that might represent large 
neighborhoods or communities (6.3 square miles). 
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observed patterns, and a value greater than 1.0 indicates overprediction. Scaling by a constant 

term implies that the difference between theoretical and observed values is proportional across 

spatial scales, implying scale invariance of the crime-generating processes (Land et al., 1990).  

The final step of analysis examines unshared crime types in greater depth to understand 

how they contribute to dissimilarity between places. In this step, we want to know which offense 

types are responsible for making places dissimilar. We defined two quantities. Let 𝜏/ be a count 

of the number of times crime type 𝑖 is present at least once in M repeated random samples of 

paired regions.  For a single crime type, three random samples [present, present], [present, 

absent], and [absent, present] would yield 𝜏/ = 3. Let 𝑢/ be a count of the number of times that 

crime type 𝑖 is present in only one of the paired regions over M repeated samples (i.e., unshared). 

In the above example, the number of times crime type i is unshared is 𝑢/ = 2. We can compare 

the total frequency of a crime type 𝜏/ with the frequency that crime type is unshared to determine 

whether rare or common crime types tend to be the reason that places differ in crime 

composition. If common crime types are often responsible for differences in crime composition, 

then identify offense-specific hot spots seems necessary from a policy/practice standpoint. If rare 

crime types are implicated, then offense-specific hotspotting may not be warranted. 

 

3 RESULTS 

The first step of analysis examined total richness, shared crime types, and unshared crime 

types in paired locations across spatial scales in St. Louis. Fig. 3 shows that the observed mean 

values for each measure increased nonlinearly with area size. Note that the mean number of 

shared crime types was much higher than the mean number of unshared types in sample pairs, 

especially for larger sample area sizes (Fig. 3A). The passive sampling model matched the 
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observed patterns for both richness (D = 0.1; p > 0.05) and shared crime types (D = 0.2; p > 

0.05). The observed mean number of unshared crime types is significantly higher than expected 

by passive sampling (D=0.9; p<.001).  

 

[Fig. 3 about here] 

 

The second step of the analysis examined observed values of the Jaccard similarity index 

in relation to expectations of the passive sampling model. Fig. 4A shows observed mean Jaccard 

(solid black line) and mean ± one standard deviation (dotted black lines) in relation to the passive 

sampling model (blue lines). The observed and expected values were qualitatively similar but 

required constant scaling to be quantitatively accurate. Jaccard similarity was higher than 

expected by the passive sampling model at micro spatial scales (see Appendix B for actual 

values), but significantly lower than theoretical expectations for larger area sizes (Fig. 4A; Dmean 

= 0.60; p < 0.001; Dmean ± 1SD = 0.53; p < 0.001). The red curves shown in Fig. 4B represent the 

passive sampling model scaled by constant values (𝑐:*(1 = 0.88; 𝑐&+ = 2.11). The red curves 

were statistically indistinguishable from the observed curves (Dmean=0.03; p>.001; Dmean ± 

1SD=0.16; p>.001).  

To explore this result further, we re-conceptualized the Jaccard index as: 

 
𝐽("$) =

𝑆ℎ𝑎𝑟𝑒𝑑
𝑇𝑜𝑡𝑎𝑙	𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠 =

𝑆ℎ𝑎𝑟𝑒𝑑
𝑆ℎ𝑎𝑟𝑒𝑑 + 𝑈𝑛𝑠ℎ𝑎𝑟𝑒𝑑 

(7) 
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and applied scaling to make expected mean unshared crime types match observed values. 5 The 

red curves shown in Fig. 4C represent the passive sampling model when only the unshared 

portion of the Jaccard index were scaled by the constant value of 𝑐;1&'()*+ = 1.37 and matched 

the observed pattern (Dmean = 0.27;  p > 0.05). Overall, unshared crime types drove the bulk of 

proportional differences in crime problems unaccounted for by the passive sampling model. 

 

[Fig. 4 about here] 

 

Finally, Fig. 5 shows how the rate at which a crime is unshared depended on the rate at 

which it was sampled, noting that both 𝜏/ and 𝑢/ were mediated by the size of the paired regions 

under observation. Fig. 5A shows the result for small paired regions (0.007 sq mi, or a disk with 

a radius of 250 feet) and Fig. 5B for large paired regions (6.339 sq mi, or a disk with a radius of 

7500 feet). Starting with the larger areas shown in Fig. 5B, crime types sampled infrequently 

because they were rare overall (low 𝜏/) (marked as point 1), were also infrequently the cause of 

the paired regions being different (low 𝑢/).  Rare crime types did not occur frequently enough to 

be decisive in driving differences between locations.  Crime types that were sampled at a high 

rate because they are common overall (high 𝜏/) (marked as point 2) were also infrequently the 

cause of paired regions being different (low 𝑢/).  Common crime types were not only sampled 

frequently overall, but they appear frequently in both of the paired regions under comparison on 

the basis of chance. Crime types of intermediate frequency (mid quartile range between 5 and 50 

 
5 We can rewrite the equation for Jaccard as: 𝐽(𝑘𝑙) = &('()

&('())*&('))&(()+,&('()-
. We then apply the constant (c) only to 

the unshared portion of the equation as follows:  𝐽(𝑘𝑙) = &('()
&('())(.∗*&('))&(()+,&('()-)

. 
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events each) were sampled somewhat frequently (intermediate 𝜏/) and were often the cause of 

locations being dissimilar from one another (high 𝑢/) (marked as point 3). Examples of these 

intermediate frequency crime types include family and child crimes, obstruction of government, 

fraud, liquor license violations, bank robbery, arson, stalking, some sex offenses, excessive 

noise, and other public order offenses. 

 

[Fig. 5 about here] 

 

The pattern observed for large sampled regions broke down, however, when we 

examined small sampled regions.  In Fig. 5A, crime types that were sampled infrequently (low 

𝜏/) could have been both shared or unshared across paired regions (low or high 𝑢/). Similarly, 

crime types that were sampled frequently (high 𝜏/) were also both shared and unshared across 

paired regions (low or high 𝑢/).  Small sample regions, even when these areas were observed for 

a whole year, enforce small sample sizes, and these effects often overrode global frequency 

differences between crime types.  In other words, a crime could have been a common type, and 

yet still not occur in both regions simply because of the small spatial window of observation. In 

this way, a common crime type looked much like a rare crime type in small sample areas. 

 

4 DISCUSSION 

This paper addressed crime composition and scale in the criminology of place. We found 

that place-based crime composition—the mix of shared and unshared crime types across 

places—tends to reflect a baseline stochastic process. The implication is that social-

environmental opportunities did not place substantial constraints on crime diversity in an area, as 
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opportunity theories would imply (Felson & Clarke, 1998; Wilcox & Cullen, 2018; Wilcox et al., 

2003). The analyses of crime patterns in St. Louis showed that the mean total richness and mean 

number of shared crime types between sampled places matches expectations from the passive 

sampling model, without the need for constant scaling. This suggests that the comparative 

passive sampling model, which assumes the operation of general crime cues and an absence of 

individual offending specialization, is a plausible explanation for crime problem similarity 

between sampled places. As it relates to policy, the findings imply that crime prevention 

strategies may be better suited for identifying general crime hot spots of all offenses, rather than 

identifying hot spots of specific offense types. 

A caveat to the above conclusion is that sampled pairs of places often had more unshared 

crime types than expected by the passive sampling model. It appeared, however, that only some 

crime types really mattered for distinguishing such locations from one another. Specifically, 

crime types that occurred at intermediate frequencies overall in the jurisdiction were often the 

cause of places being different from one another. Importantly, these intermediate frequency 

crime types were not “high profile” crimes (e.g., assault). But neither were they truly “oddball” 

crimes that prompt minimal attention (Felson 2006). Crimes that occur relatively infrequently, 

but were often the cause of place-based crime compositional differences (i.e., unshared crime 

types), included family and child crimes, obstruction of government, fraud, liquor license 

violations, bank robbery, arson, stalking, some sex offenses, excessive noise, and other public 

order offenses. This observation reinforces the idea that general crime hot spot identification may 

be sufficient for directing crime prevention strategies. To the extent that crime type-specific hot 

spot identification is necessary, it may only need to focus on a handful of relatively uncommon 

crime types. 
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The above conclusions were not invariant over spatial scale. Micro places in St. Louis 

were actually more similar to one another than expected by chance alone. This is important for 

the study of crime and place because micro-spatial patterns often display larger variability than 

macroscopic patterns in terms of crime frequency (Mohler et al., 2018; Schnell et al., 2017; 

Steenbeek & Weisburd, 2016; Weisburd, 2015). As it relates to the qualitative nature of crime 

problems, we might have assumed that micro-places would be quite different from one another 

in a structured way. Instead, we observed that the patterns at micro places were even more 

similar than expected from the passive sampling model, which spreads crime types evenly across 

place. The pattern appeared to be driven by unshared crime types. Although variation in Jaccard 

similarity was larger at micro scales than at macro scales (see coefficient of variation in 

Appendix B), the average dissimilarity (unshared crime types) between micro-places was lower 

than expected by passive sampling. Overall, the observation was that crime problems in micro-

places were much less different from one another than is often implied.  

Our study had several limitations. First, the sampling method we used does not explicitly 

account for edge effects. Areas sampled from the edge of the city would not be as large in 

practice as their expected sizes. We are unsure how edge effects might affect the results. Second, 

the crime composition metric we used treats all dissimilar crime types as equally dissimilar 

(Peet, 1974). Simple assault and aggravated assault, for example, are considered just as different 

from one another as simple assault and larceny. While this may be viewed as an 

oversimplification, such an assumption should also make it easier to reject the null hypothesis 

that environmental crime cues are always general (i.e., no place-based specialization). If we 

allowed a more nuanced classification where crime types carried a weighted dissimilarity with 

other types, it would be harder to reject the null hypothesis (Lentz, 2018). Given that we find it 
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difficult to fully reject the null hypothesis, our conservative use of the crime composition metric 

strengthens our conclusion that specific cues contribute much less influence than criminological 

theory might expect. 

The use of stochastic models, such as passive sampling, tend to be met with immediate 

criticism and apprehension. One reason is because they often stand in opposition to mainstream 

theoretical perspectives. In the present case, the passive sampling model challenges the claim 

that variation in environmental conditions or opportunities is responsible for differences in the 

types of crime that occur across places – a claim that follows directly from the tenets of 

environmental criminology (Brantingham & Brantingham, 1981), opportunity theory (Wilcox & 

Cullen, 2018), and the criminology of place (Weisburd et al., 2016; Weisburd et al., 2012). One 

might wonder how such a model can explain an observed pattern despite a large literature 

supporting the mainstream idea.  

Alternatively, we may just accept that multiple types of processes (e.g., general and 

specific cues, stochastic and deterministic) may be important in generating observed patterns of 

interest. This idea is consistent with mechanism-based perspectives in the broader social sciences 

(Hedström & Swedberg, 1998) and is making its way into the criminology of place (Bruinsma & 

Pauwels, 2018; Taylor, 2015). As it pertains to this study, the passive sampling model suggests 

that stochasticity dominates much of what we see in spatial patterns of crime diversity, implying 

a general lack of crime and place specialization, but we acknowledge that specific cues may also 

play a role in certain instances. 

 

5 CONCLUSION 
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This paper improves on approaches for examining crime diversity across spatial scales. 

Our findings contribute to a growing body of work that suggests environments have general 

influence on the crime that occurs there, rather than narrowly influencing specific types of crime 

events. It follows that crime prevention strategies may be better suited for identifying general 

crime hot spots of all offenses, rather than identifying hot spots of specific offense types. The 

comparative passive sampling model can be used to test whether places differ in the types of 

crimes that occur there on the basis of chance. This approach developed herein could also be 

adapted for comparing the composition of any type of place-based phenomenon. The model 

leverages mathematical machinery with a long history in ecology (Chao et al., 2005; Coleman, 

1981), rather than relying on simulation to generate the null distribution. The comparative 

passive sampling model could complement other approaches to examining the geographic 

distribution of any physical or social phenomenon across spatial scales. 
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Fig. 1. Graphical representation comparing crime composition between two hypothetical places k 
and l. Each dot represents a unique crime type and the shaded portion of the Venn diagram 
indicates which crime types are counted in the metric. (A) shows the number of unique crime 
types occurring in place k; (B) shows the number of unique crime types occurring in place l; (C) 
shows the number of shared crime types occurring in both places; (D) shows the number of 
unshared crime types occurring in either place k or l, but not both. The total richness of both 
places is the sum of the number of shared and unshared crime types or equivalently the sum of 
crime types in places k and l minus the number shared (total richness=8). Jaccard similarity is the 
proportion of the total number of unique crime types shared by both places (𝐽"$ = <

=
= 0.375). 

Adapted from Chao et al. (2005). 
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Fig. 2. Concentration of crime across space and crime type in St. Louis, 2017. (A) Random 
sample of 1,000 crimes overlaying kernel density map of all crimes. (B) Rank-frequency plot 
showing the distribution of incidents across crime types St. Louis (black plots; S = 161 unique 
crime types). The y-axis is sorted from the most frequent crime type (rank=1) to the least 
frequent, and the x-axis shows the log-frequency of each type. Crime types that occur only once 
in the data have log-frequency equal to zero.   
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Fig. 3. Observed and theoretical mean values of crime richness (black), shared crime types 
(blue), and unshared crime types (red) in pairs of sampled locations as a function of area size in 
St. Louis, MO during 2017. (A) shows observed patterns only and (B) compares observed 
patterns (solid lines) and theoretical expectations (dashed lines). Theoretical expectations 
represent passive sampling model. 
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Fig. 4. Observed and theoretical crime problem similarity (Jaccard) between pairs of sampled 
locations at varying spatial scales in St. Louis, MO during 2017. The mean (solid lines) and 
mean ± 1 standard deviation (dotted lines) are shown. (A) compares the observed (black) and 
theoretical (blue) values of Jaccard; (B) compares theoretical values scaled by a constant (red) to 
match the observed pattern (black); (C) compares theoretical values scaled with unshared 
constant (red) only to match observed pattern (black). 
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Fig. 5. Relationship between observed total frequency and sample unshared frequency in sample 
pairs for each unique crime type (N = 161 Types) in St. Louis, MO 2017. (A) shows relationship 
for 0.007 square mile areas; (B) shows relationship for 6.338 square mile areas. Crime types that 
occur only once have log frequency equal to zero. 
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