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Investigating Clustering and Violence Interruption in Gang-Related Violent Crime
Data Using Spatial-Temporal Point Processes With Covariates
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ABSTRACT

Reported gang-related violent crimes in Los Angeles, California, from 1/1/14 to 12/31/17 are modeled using
spatial-temporal marked Hawkes point processes with covariates. We propose an algorithm to estimate the
spatial-temporally varying background rate nonparametrically as a function of demographic covariates.
Kernel smoothing and generalized additive models are used in an attempt to model the background
rate as closely as possible in an effort to differentiate inhomogeneity in the background rate from causal
clustering or triggering of events. The models are fit to data from 2014 to 2016 and evaluated using data
from 2017, based on log-likelihood and superthinned residuals. The impact of nonrandomized violence
interruption performed by The City of Los Angeles Mayor’s Office of Gang Reduction Youth Development
(GRYD) Incident Response (IR) Program is assessed by comparing the triggering associated with GRYD IR
Program events to the triggering associated with sub-sampled non-GRYD events selected to have a similar
spatial-temporal distribution. The results suggest that GRYD IR Program violence interruption yields a
reduction of approximately 18.3% in the retaliation rate in locations more than 130 m from the original
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reported crimes, and a reduction of 14.2% in retaliations within 130 m.

1. Introduction

Crime occurrences are highly clustered in space and time (Weis-
burd 2016, Mohler 2019). Theory suggests that the observed
clustering in crime event data is driven by two main effects: (i)
spatial heterogeneity in local risk factors and (ii) the dependence
on recent crimes which may incite repeat offenses or retaliations
(Heckman 1991). Unfortunately the two effects are difficult to
disentangle in observed data and often confounded in statistical
analyses (Diggle 2014, chap. 9.6).

Spatio-temporal clustering is particularly characteristic of
gang violent crime (Martinez 2016; Valasik 2017). Explanations
for the clustering in gang violent crime also point to a combi-
nation of stable, structural differences between neighborhoods
(i.e., spatial heterogeneity) (Barton 2019) and the local dynamics
of tit-for-tat attacks (i.e., statistical dependence) (Papachristos
2009; Brantingham 2019). Gangs tend to cluster in areas with
high rates of poverty, high unemployment, under-performing
schools, high rates of female-headed households, high residen-
tial instability, and high percentages of the population under the
age of 18, all well-known indicators of concentrated disadvan-
tage that change very slowly over time (Sampson 1997; Kubrin
2003; Papachristos and Kirk 2006). These neighborhood charac-
teristics undermine a community’s ability to exert social control
and limit the activity of gangs (Curry 1988; Valasik 2017). Gangs
are thus enduring features of the social landscape with territorial
footprints that are very stable over time (Brantingham Patillo-
McCoy 1999; Brantingham et al. 2019). Gang violent crime

therefore tends to cluster where gangs are most active, par-
ticularly along gang territorial boundaries (Tita and Ridgeway
2007; Brantingham 2012). Moreover, since gang territories can
be large (e.g., covering whole neighborhoods), or small (e.g.,
limited to a single street block), very fine-grained spatial het-
erogeneity may play a key role in the clustering of gang crime.

Superimposed on these structural generators of crime are
gang social dynamics that operate both within and between
neighborhoods. Gang crimes are often retaliatory in nature
(Decker 1996; Klein and Maxon 2006). Interactions between
gangs that threaten geographic territory or gang reputation
can escalate to a shooting, while a shooting or homicide often
demands retribution in kind (Hughes and Short 2005; Jacobs
and Wright 2006), driving a sequence of tit-for-tat reciprocal
attacks (Bjerregaard and Lizotte 1995; Rosenfeld et al. 1999;
Howell 2011). Retaliatory aggression may be linked to a deep-
seated moral instinct (Daly and Wilson 1988), street codes that
demand quick and decisive retribution (Decker 1996; Ander-
son 1999; Jacobs and Wright 2006), commitment to delinquent
peers (Esbensen et al. 1993), and social networks that promote
the spread of rumors (Hughes and Short 2005; Green, Horel, and
Papachristos 2017).

It has recently been argued that Hawkes process models
offer a concise statement of these two important effects (Mohler
et al. 2011; Mohler 2014; Reinhart and Greenhouse 2018).
In Hawkes models clustering is attributed to both causal and
noncausal mechanisms: an event occurring in a particular
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location increases the likelihood that other events will occur
in its vicinity in the near future (causal), while some events
occur exogenously due to a chronic, spatially inhomogeneous
background component (noncausal). While useful at a theoret-
ical level, a Hawkes process model also has important practical
implications. Specifically, causal clustering suggests an opportu-
nity to prevent crime by disrupting the underlying, local dynam-
ical processes (Mohler et al. 2011; Mohler et al. 2015; Green,
Horel, and Papachristos 2017). One such program with the goal
to disrupt retaliatory gang violence has been implemented in
Los Angeles since 2009.

The City of Los Angeles Mayor’s Office of Gang Reduction
and Youth Development (GRYD) is a city-funded comprehen-
sive gang prevention and intervention program to reduce the
likelihood of retaliations when violent gang crimes do occur
(Skogan et al. 2009; Cespedes and Herz 2011; Tremblay et al.
2020). Our research is focused on this latter effort, called the
GRYD Incident Response (IR) program. In brief, GRYD IR
tasks civilian community intervention workers (CIWs) with
responding quickly to violent gang incidents as they occur.
In the field, CIWs work to control rumors, proactively dif-
fuse tensions and deliver services to victims and their fam-
ilies. CIWs coordinate with regional program coordinators
(RPCs) in the GRYD Office, who remain in communication
with the LAPD about gang suppression and investigative activ-
ities (Tremblay et al. 2020). However, due to both resource
limitations and discretion in the reporting process, GRYD
IR is usually only deployed for a subset of reported gang-
related violent crimes. A central question of interest there-
fore is whether the GRYD IR Program is effective and how
much, if at all, it reduces retaliatory crime. If it is effec-
tive, then the argument can be made that efforts should be
made to ensure that GRYD IR is deployed more widely to
cover more of the gang-related violent crime occurring on the
streets.

We suspect that the effectiveness of GRYD IR is closely
tied to how much causal triggering is present in gang related
crime. In general, the more causal triggering there is, the greater
the opportunity to disrupt retaliations with rapid response.
Thus discriminating between causal clustering and inhomo-
geneity in the gang-related violent crime data is central to our
study of the effect of GRYD IR. This is a difficult problem
arising frequently in the study of spatial-temporal point pro-
cesses (see Chp. 9.6 of Diggle 2014). Indeed, in fitting spatial-
temporal Hawkes processes, it is often inadvisable to use iden-
tical data to estimate parameters governing the background
rate (inhomogeneity) and the triggering density (causal clus-
tering), as these parameters may not be jointly identifiable.
For this reason, Ogata (1998, sec. 4.2) suggested modeling the
background rate for earthquakes using only the largest mag-
nitude events in the catalog, for instance. For crimes, there is
no such natural partitioning of events based on magnitude to
guide the estimation of the background rate. In the case of
reported gang-related crimes in South Los Angeles, we attempt
to model the inhomogeneity nonparametrically using general-
ized additive modeling. Specifically, we model spatially varying
crime rates given observable covariates linked to social and
economic variations in the urban environment. With these
factors accounted for, additional clustering observed in the

data may be more reasonably attributed to retaliatory criminal
behavior.

Spatially varying covariates have previously been used to
model the background spatial inhomogeneity in Hawkes pro-
cesses by Reinhart and Greenhouse (2018). However, simple
parametric forms of the background rate were required for
tractable analytic maximization steps in the EM-algorithm.
We propose an iterative procedure that allows for use of any
supervised learning method using covariates. For the first time,
we compare the fit and predictive performance between using
covariates for estimating the background rate of crime and the
more common method of kernel smoothing over all crimes as
in Mohler (2011, 2014). Methodological choices in bandwidth
selection for kernel smoothing are examined. We demonstrate
through our results that kernel smoothing over all reported
crimes in the dataset can lead to confounded estimates of back-
ground inhomogeneity and causal clustering/retaliation. We
assess how this affects the estimated amount of retaliation and
its space-time decay rates.

One challenge in evaluating the efficacy of the GRYD IR
Program is that its response to violent events are not randomize;
one cannot legitimately refuse to provide services to a victim’s
family for the purposes of experimental purity. Rather, GRYD
CIWs use their specialized knowledge of local gang dynamics
and intervene in areas believed to be more prone to retaliations
(Tremblay et al. 2020). As a result, excitation/retaliation rates
are naturally biased upward for crimes exposed to the GRYD IR
Program compared to untreated crimes, even after controlling
for spatial inhomogeneity of the background rate of reported
crimes. We propose a simple method inspired by point process
thinning (Lewis and Shedler 1979) to sample untreated crimes
so that they are distributed similarly in space and time to the
crimes exposed to GRYD IR Program efforts. This allows an
approximate treatment vs. control comparison of the GRYD
IR Program. The results reveal that the GRYD IR Program is
effective, reducing rates of reported retaliations by an estimated
18.3% over two different spatial scales and reducing such retalia-
tion rates within a spatial scale by an estimated 14.2% according
to the fitted model.

The rest of this article is organized as follows. A brief
description of the data is provided in Section 2. Our proposed
iterative method to incorporate nonparametric regression for
the background rate of a Hawkes process while simultaneously
estimating the triggering component is explained in Section 3
along with a description of methods for covariate selection,
out-of-sample prediction log likelihoods, residual analysis, and
sampling controls to compare with the GRYD IR Program.
The results and a discussion are given in Sections 4 and 5,
respectively.

2. Data

Reports of gang-related violent crimes from 2014 to 2017 were
collected by the Los Angeles Police Department (LAPD) and
the City of Los Angeles Mayor’s Office of Gang Reduction Youth
Development (GRYD). GRYD operates in 23 zones throughout
Los Angeles (GRYD 2017 Evaluation Report). We focus on ten
GRYD Zones in South Los Angeles that represent 7% of the



total land of Los Angeles ( 1302 km?) and approximately 15.5%
of the total population (3.9 million). This region accounted for
44.7% of all officially reported gang-related violent crimes in
Los Angeles between the beginning of 2014 to the end of 2017.
Of the 3627 reported crimes in our study, 1100 were exposed
to GRYD IR Program efforts. Multiple records, representing
multiple victims of an identical crime, are collapsed to one
report. LAPD officers record the locations of crimes at the level
of street addresses or intersections. For privacy reasons, latitudes
and longitudes are uniformly randomized over a 15 m interval
centered at each reported crime.

Demographic and socio-economic covariates are compiled at
the census block level, which is currently the highest resolution
published by the U.S. Census. These data are obtained from
the American Community Survey, publicly available at https://
factfinder.census.gov. We use the same eight variables used in
Kyriacou et al. (1999), who previously studied the relationship
between socioeconomic factors and gang violence in the city
of Los Angeles: per capita income, unemployment, percentage
with high school degree, percentage of single-parent families,
percentage of males, percentage under 20 years of age, per-
centage black, and percentage Hispanic. We also include pop-
ulation density as a potential covariate since in point process
modeling our outcome variable is the reported crime rate per
unit of time and space, while Kyriacou et al. (1999) studied
reported crimes per 100,000 people. Ideally, we would also
include covariates directly related the geography of gangs and
the law enforcement response to gang violence. For example,
gang territorial boundaries appear to be important generators of
gang violence (Brantingham et al. 2012). Geographically based
restraining orders against gangs, called criminal gang injunc-
tions, are likely to have the opposite effect (Bichler et al. 2019).
These unmeasured covariates likely impact spatial heterogeneity
in the background rate as well as where GRYD IR chooses to
intervene.

Latitudes and longitudes are geocoded to census block iden-
tifiers using https://geocoding.geo.census.gov. Data on the land
mass of each census block uses the latest publicly available
source, the 2010 Census of Population and Housing (U.S. Cen-
sus 2012). Our study region consists of 410 census blocks. The
average size of each block is approximately 0.22 km?, and the
median number of reported crimes in each census block over
the 4 years of observation is 7.

3. Methods

We note at the outset that most of our inferences are based on
the particular formulation of the Hawkes model in Equation
(11) below, with background rate estimated using Equation (10).
We will later refer to this as model (IV). For comparison and to
motivate this model and estimation procedure, we also consider
various alternatives described in what follows.

3.1. Overview of Hawkes Models

We consider crime data as a marked space-time point pro-
cess {(ti,xi,yi»m;) : i = 1....N}, representing the times,
locations, and mark information associated with gang-related
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violent crimes. In our study, the marks recorded are indicators
of whether crimes were exposed to GRYD IR Program efforts
or not. The rate of occurrences of points with any mark is
characterized via the conditional intensity,

)"(t) x,)/|7‘lt)
Cim EIN((t,t+ At) X (x,x+ Ax) X (3, y+ Ay) ) | Hy]
T ALAXAYLO AtAxAy '

Daley and Vere-Jones (2003) showed that all finite dimensional
distributions of a simple point process (i.e., a process with
almost surely no coincident points) are uniquely determined by
its conditional intensity. In the study region S, where (x,y) €
S c R2andt € [0,T), N(A) counts the random number of
occurrences over the set A C Sx[0, T) given the history 7{; of all
points occurring prior to time t. The conditional intensity A can
be interpreted as the instantaneous expected rate of a reported
crime per volume of space-time.

When the data features clustering over space and time, it
is common to model A using self-exciting point process mod-
els, where each event triggers further events by temporarily
and locally boosting the conditional intensity A. A Hawkes
model is a particular formulation for a self-exciting process
that has been successfully used to model the spread of invasive
species (Balderama et al. 2012), epidemic disease spread (Meyer
et al. 2012), earthquakes (Ogata 1998), financial transactions
(Bauwens and Hautsch 2009), neuron activity (Johnson 1996),
reported burglaries (Mohler et al. 2011), E-mail networks (Fox
et al. 2016) and terrorist attacks. The Hawkes model can be
specified as

Mooy t) = pxyp )+ Y kgl —xpy =yt — 1), (1)

i<t

where the triggering density g governs the spatial-temporal
distance of triggered events from their antecedent events and
is usually modeled to decay with distance from the origin over
time and space. Previous authors have typically modeled the
background rate u as spatially varying but constant in time. The
spatial-temporal distribution of triggered events is commonly
assumed to be separable, meaning g(x,y,t) = g1(x,y)g2(t).
We scale g1 and g to be densities as suggested in Schoenberg
(2013), which implies the productivity « (i) > 0 represents the
expected number of events triggered directly by event i, and
we let k(i) = « if crime i is exposed to GRYD IR Program
efforts and «, otherwise, where k) and «; are scalar parameters
to be estimated. In the absence of the GRYD IR Program, any
particular crime is expected to be an ancestor to k3 + &3 + k5 +
.= 1—1K2 — 1 total retaliatory crimes. Productivities must be
nonnegative and are constrained to be less than 1 in order for
the process to be stable.

Our parametric specification of g follows: Mohler (2014)
and Reinhart and Greenhouse (2018). Consider g;(t — t;) =
we~ =1 where w controls the decay rate of triggering and 1/
is the average response time. The spatial distribution of triggered
crimes, g1, is assumed to be isotropic, that is, g1(x,y) = h(r)
in polar coordinates where r = /x2 + y? and h(r,0) = h(r).
Given [ [, g1, y)dA = [° fOZH g1(rcos@,rsin)rdrdd =

SO JF h(yrdrdd = 1, set gi(x,y) = h(r)/2r so that h(r)
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is the probability density function for the distance r between
a reported crime and any reported retaliation it triggers. The
function h of distance may be any density on the real half-line,
such as the truncated Gaussian centered at zero,

2 )
—— exp(— ).
Vmo? P02
Given a parameterized model for A(t, x, y), the log-likelihood

of an observed sequence of N reported crimes over an interval
[0, T] in region S is (Daley and Vere-Jones 2003)

h(r) = )

N T
1©) = 3 log (it xis i ) — f / fs At %,y Ho)ddydt.
i=1 0

3)

Ogata (1978) showed that under general conditions the max-
imum likelihood estimate (MLE) is consistent, asymptotically
unbiased and efficient, with standard errors estimated using the
square root of the diagonal elements of the inverse Hessian of
the loglikelihood.

3.2. Background Rate Estimation

Accurate estimation of the background rate y is critical for accu-
rately estimating the parameters in (1), and is especially impor-
tant for the discrimination between spatial-temporal inhomo-
geneity and causal clustering. The key idea is that after prop-
erly accounting for background inhomogeneity, the remaining
clustering can be reliably attributed to retaliation. Background
rate estimation is thus the subject of careful study here, and
we consider two different estimates for the background rate
u(x, y,t) in Equation (1).

3.2.1. Kernel Smoothing With Stochastic Declustering
The background process w(x, y, t) represents the expected rate
of reported crimes in the absence of retaliation. In applying
such Hawkes models to reported crimes, Mohler et al. (2014)
proposed estimating 1 using a time-invariant smoother over all
events, using mark dependent weights (i), for example:

(x, y, t) = w(x,y) (4)
N . 2 2
B(i) (x—x)"+ (@ —yi)
- ZZnnzTeXp(_ 2n? )
i=1

Here T is the length of the observation period and N is the
total number of observed points. The smoothing bandwidth 7 is
typically constrained to be identical to the triggering bandwidth
o in Equation (2) in order to achieve numerical stability in
optimization and identifiability of the parameters (Mohler et al.
2014; Yuan et al. 2019). In our study, we choose not to impose
these constraints on the smoothing nor triggering bandwidths
and instead estimate them separately.

Estimating the background rate by smoothing over all points
with equal weights, regardless of whether each point is more
likely to be a background point or a retaliation, may lead to
mis-attribution of triggering as background and vice versa. In
addition, in the presence of intense spatial clustering, a fixed
bandwidth may yield noisy estimates in sparse areas and over-
smoothed estimates between dense and sparse areas (Zhuang

etal. 2002; Yuan et al. 2019). Thus, as an alternative to Equation
(4), we obtain a weighted, variable-bandwidth, stochastically de-
clustered background rate estimate

N

. w; (x—x)*+ (v — yi)?
axyt) = E ——exp(— : 2)/ Ji )-
) xd:T 2d:
i2(xi>yi) 7 (%,y) ! !

(5)
In (5), the d; is the radius of the smallest disk centered at
point (x;, y;, t;) that includes at least 7, other events; each d; is
constrained to be at least some minimal value € representing the
approximate size of errors in location estimates. The weight w; is
the estimated probability, according to the fitted model (1), that
crime i is a background event, and is computed as

0 ti, Xi, Vi
w; = M (6)
A(ti> xi» yi)
The algorithm, originally proposed in Zhuang et al. (2002),
works by iteratively estimating the triggering parameters and
updating estimates of {wi}f\i 1

3.2.2. Temporal Variation in Background Rate

According to Equation (5), the temporal density of background
events is stationary (1/T), and the spatial distribution does not
change over time. However, given the pronounced temporal
fluctuations in reported gang-related violent crimes shown in
Figure 1, a constant temporal background rate is unrealistic
and may lead to inflated estimates of productivity (i.e. mis-
attribution of background crimes as triggered events). There-
fore, as in Fox et al. (2016), we allow the temporal distribution
of background crimes to be nonstationary

Axpt) (7)
N A )2 Y
=v(t) - Z Wi 5 eXp (— (x — %) +2()’ yl) ) .
) 2 d: 2d°
ix(xiyi) #(x,y) ! !

Estimating periodic components of v(¢) while incorporating
weights such as w; would be optimal, especially in the presence
of strong clustering (Zhuang and Mateu 2019). But for simplicity
and because of the added computational costs, we opt to esti-
mate the periodic components of v(t) once using all the data
with equal weights as in Fox et al. (2016), obtaining the estimate
W) = chh()RA®)f3(y(t)) where h(t) € [0,24), d(t) €
{0,...,6} and y(¢) € {0,1,2,3} represent the hour, day of the
week, and year, respectively, corresponding to time t. We esti-
mate the daily cycle fl (h(t)) via kernel smoothing the times of
the days of the reported events; the repeating weekly cycle f;, and
year-to-year variations fg are simply estimated via histogram
estimators representing the proportion of crimes occurring on
certain days d and years y, that is,fz = Zfil I(d; = d(t))/N
and fA3 = Zfil I(y; = y(#))/N. The estimated daily, weekly,
and multi-year components of v(t) are shown in Figure 1. No
substantial annual cycle was observed for reported gang-related
violent crimes in this study period. The constant c is chosen to
ensure that fOT ¥(t)dt = 1 and is accurately approximated by a
Riemann sum.
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(Left to right): Daily cycle, weekly cycle, and year-to-year variations in crime used for components of o(t).

Figure 1. Temporal distribution of all gang crimes. (Left to right): Daily cycle, weekly cycle, and year-to-year variations in crime used for components of ¥(t).

3.2.3. Generalized Additive Modeling of Covariates
Rather than estimating the background rate © by smoothing
over observed events, an alternative way to estimate the back-
ground rate is to use information on the spatial heterogeneity
in demographic and socio-economic covariates. Reinhart and
Greenhouse (2018) used covariates to model the background
rate of a Hawkes process for reported burglaries in Pittsburgh
with the parametric form

1(x,y) = exp (v(x,9)'y), (8)
where y is a vector of coeflicients to estimate and v(x, y) is a vec-
tor of covariates measured at location (x, y). In our application,
following covariate selection, v(x, y) represents the covariates
per capita income, population density, male percentage, single
parent rate and unemployment rate for the census block con-
taining the location (x, ).

Instead of requiring the background rate to follow an expo-
nential or some other particular functional form, we propose
allowing i(x, y) = f(v(x, §2)R wheref is estimated nonparamet-
rically, for example, by generalized additive modeling (GAM),

p
Hp(xy)) =bo+ Y _ hi(j(x,y)) ©)

j=1

where p and I represent the number of covariates and a link func-
tion, respectively. Here, the additive components /1 are smooth-
ing splines. A simplistic approach would be to first estimate
f by nonparametric regression of the observed crimes on the
covariates v(x, ). The problem with such an approach, however,
is that both background and triggered crimes would be used
in estimating f, though in principle only background crimes
should be used.

We propose the following iterative solution. Suppose the
study region is divided into 410 census blocks {Bk}ilzol, where
By is a set of indices of crimes belonging to the kth census block.
Given a fitted model, we estimate the background crime rate of
census block k as > _;p wi/ax where w; is defined in Equation
(6) and ay is the area in km?. We propose to estimate f via
nonparametric regression of » B, Wi/ @i on covariates in the
following algorithm:

Algorithm 1

1. Initialize m < 0, WEO) <« Unif (0,1).
2. Fit

1" (x,y) = f(v(x,y)) (10)

where f is estimated by nonparametric regression of
_icB, Wi/ak on census block level covariates.
. Using maximum likelihood estimation, fit

Ay, b)) =c-v(t) - wum (x,9)
+ Z k(Dg1(x — xiy — ¥yt — t;)

i<t

where v(?), k, g1, & are as defined previously and ¢ is an
estimated parameter governing the proportion of events

attributed to the background rate.
(m+1)

. Calculate w; from (6) and update w; <~ wjfori =

1...N.

. If max; |w§m+1) - wl(m)l > €, where € is a small positive
number, then update m < m + 1 and go to step (2).
Otherwise stop.

The function f can be estimated using any nonparametric
regression method in Step 2, and we estimate f via GAM in the
application here for flexibility and interpretability.

3.3. Near and Far-Field Triggering

The smoothness of the estimated background rate using spatial
covariates depends not only on the variability of the covari-
ates across different spatial units, but also on the resolution of
the spatial units themselves. In practice, the observed spatial
covariates are piecewise constant. Even when using the highest
available spatial resolution kept by the U.S. Census where the
average size of a census block is equivalent to an area of a 470 by
470 m square containing only a median of 7 crimes over 4 years,
clustering in the reported crimes is still evident within the scale
of a census block, especially in census blocks with high 4-year
crime counts.

Therefore, when estimating models with background rates
using covariates, we allow different parameters for the near and
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far-field triggering, using the following modification to the total
triggering rate:

M ) o
2nr

Mooy t) = v(OREY) + Y Knear()
i<t
() e
+ Z rar (1) = cope™ (71,
iti<t,
r>d

(11)

where h; is a half-normal density over the positive real line
with triggering bandwidth o7 and h; is a half-normal density
centered at d (d km’s away from the originating reported crime)
with support [d,o00) and with triggering bandwidth o,. We
estimate d using the median distance from the observed crimes
to their nearest neighbors in different census blocks (130m). We
use the notation kpear(i) = k1 and kg (1) = «3 if crime i is
associated with the GRYD IR Program, and otherwise Kpear (i) =
Kk and kg (i) = K4, where k1, k2, k3 and k4 are scalar parameters
to be estimated by maximum likelihood.

3.4. Integral Approximation

The first term of the log-likelihood in Equation (3) is straight-
forward to compute while the integral term must be numerically
approximated, which can be a substantial computational chal-
lenge (Harte 2013). In all models investigated in this article, we
use the analytic integral approximation in Schoenberg (2013),
and find parameter estimates by MLE using the quasi-Newton
method developed by Broyden, Fletcher, Goldfarb, and Shanno
(1970). The integral approximation is based on interchanging
the order of the integral in Equation (3) and the sum in Equation
(1); this approximation is perfect if all triggering is confined to
the spatial-temporal region being observed (Schoenberg 2013).

For example, the approximate log-likehood for the model
with background rate (7) is

N

N
l(KI) K2, :31) :32) w, 0, T]) = Z log[)"(xi)yi) tl)] - Z [Wi +K(Z)]
i=1 i=1
(12)
As a baseline for comparison, we also consider a model with a
spatially constant background rate

Xy, t) =c-v(t), (13)

whose log-likelihood is

N N
11, K2, ¢,0,0) = ) log[A(xi yis )] — - IS| = D~ (i), (14)
i=1 i=1

where |§] is the area of the observation region being studied.

3.5. Sampling Non-GRYD Crimes as Controls

After attempting as carefully as possible to distinguish inhomo-
geneity from causal clustering, we seek to evaluate whether the
GRYD IR Program effectively reduces retaliations by comparing
the estimated productivity for reported crimes with exposure to
violence interruption with the productivity of reported crimes
without such exposure. If the GRYD IR Program violence inter-
ruption efforts were randomly assigned over space and time, this

comparison would be straightforward. However, the decision
by the GRYD IR Program when and whether to intervene is
made based on attempts to maximize the effect of violence
interruption with limited resources, using specialized knowl-
edge of local gang dynamics in an attempt to intervene follow-
ing crimes believed most likely to spark retaliation. Thus, the
reported crimes associated with the GRYD IR Program are more
likely to occur in areas of high reported gang-related activity,
for instance, and thus to occur in areas of higher subsequent
reported crime incidence despite the possible effectiveness of the
violence interruption.

Instead of using just two marks for the GRYD IR Program
and non-GRYD, we introduce a third mark which is sampled
from non-GRYD crimes that are spatially temporally distributed
similarly to GRYD IR Program crimes. Our aim is to obtain
a sample of non-GRYD crimes with similar spatial-temporal
characteristics as the GRYD IR Program crimes to isolate the
effect of the GRYD IR Program.

We suppose that reported crimes exposed to GRYD
IR Program efforts occur with an intensity varying over
space, hour of the day and day of the week, given by
P(x,y,h,d) = P1(x,y)P2(h)P3(d), and that non-GRYD crimes
follow Q(x, y, h, d) = Q1(x,¥)Q2(h)Q3(d). Spatial distributions
P; and Q are estimated using kernel density estimation with
Gaussian kernels and default bandwidths along each dimension
given by Sheather and Jones (1991). The 24h cycles P;, Q;
and day-to-day weekly cycles P3, Q3 are estimated in the same
manner as the components of v(¢) in Equation (7) and displayed
in Figures 3 and 4. We then sample the same number of non-
GRYD crimes as there are reported crimes for the GRYD IR
Program, without replacement, using sampling weights v; given
by

P1(x,y) P2 (h)P3(d)

Vi = % = = . (15)
Q1 (x,)Q2(M)Q3(d)

This results in a sample of non-GRYD crimes whose spatial-
temporal distribution is similar to that of GRYD IR Program
crimes, and this sampling can be performed repeatedly. The
results of one such sampling are shown in Figure 2. This sam-
pling is repeated 50 times, and the associated productivities are
estimated by maximum likelihood each time. We then compare
the average estimated productivity of GRYD IR Program crimes
with the average estimated productivity of the sampled con-
trol crimes to evaluate the efficacy of the violence interruption
efforts.

We note that there may be potential confounding that could
lead to an underestimation (or overestimation) of GRYD effec-
tiveness. For example, the “specialized” information used by
GRYD IR to decide whether to intervene or may be unrelated
to the exact time and location of a reported crime. This would
result in an underestimation of the program’s effectiveness.
However, evidence suggests that gang social processes are tightly
coupled to the time and locations where gang crimes occur (Tita
and Griffiths 2005; Tita and Ridgeway 2007; Brantingham et al.
2012; Huebner et al. 2016; Valasik and Tita 2018). Thus, the
outcome is likely to be similar whether GRYD uses the location
and time of an event to make a decision, or more detailed
information.
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unsampled non-GRYD crimes. The union of crimes in these three panels are used to estimate models in Table 1.

Figure 2. Spatial distribution of marks. (Left to Right): Locations of GRYD IR Program crime events, one sample of non-GRYD crimes and remaining unsampled non-GRYD
crimes. The union of crimes in these three panels are used to estimate models in Table 1.

3.6. Evaluation Methods

Four types of models and background rate estimation methods
are investigated: (I) constant background model in Equation
(13), (II) kernel smoothed background model in Equation (7),
(IIT) covariate background model in (10), all with triggering as
in Equation (2), and (IV) covariate background model (10) with
near and far-field triggering as in Equation (11). To assess the
efficacy of the GRYD IR Program, we also evaluate the fit of
model (IV) with sampled non-GRYD control marks as detailed
in Section 3.5. Log-likelihood scores are used to compare the
goodness of fit on training data from 1/1/14 to 12/31/16, the
same data used in the fitting. To investigate possible over-fitting,
out-of-sample log-likelihood scores for each model are also
computed, using data from 1/1/14 to 12/31/16 in the fitting
and data from 1/1/17 to 12/31/17 for evaluation. In the rare
instance of negative predicted crime rates, the prediction is
coerced to zero. Superthinned point process residuals, described
below, are used to examine the model forecasts from 1/1/17 to
12/31/17.

Superthinning involves both thinning the original data
points and superposing a new set of points, and is an effective
way to evaluate the fit of a point process model (Bray and
Schoenberg 2013; Clements et al. 2013). The observations are
first thinned, that is, each observation is randomly kept with
probability min {b/ A(D), 1}, where b is a tuning parameter cho-
sen by the user. Next, a Poisson process with constant rate b is
generated over the space-time observation region, each point
of this Poisson process is independently kept with probability
max {(b — i(t)) /b, 0}, and these remaining points are super-
posed, that is, added to the collection of thinned observations.
The resulting residual process should be a homogeneous Pois-
son process with rate b if and only if the modeled conditional
rate is correct (Clements et al. 2013), and thus departures from
homogeneity in the residuals can be detected as evidence of
lack of fit of the model. Sparsity of points in the superthinned
residuals corresponds to areas where the model over-predicted,
whereas clustering in the residual points indicates areas where
the model under-predicted the number of observed events. For
all models considered here, we use identical candidate points

to be superposed, so that our comparisons are not impacted
by random fluctuations in the superposition step, and we
use the mean number of observed points per unit of space-
time as the default estimate of b, as suggested by Clements
etal. (2013).

4. Results
4.1. Spatial-Temporal and Covariate Effects

The spatial distribution of the GRYD IR Program events, non-
GRYD events sampled according to Equation (15), and other
non-GRYD events are shown in Figure 2, and the temporal
distributions of the three classes of events are shown in Figures 3
and 4. If GRYD IR Program events were assigned purely at
random, then the point patterns shown in the three panels
of Figures 2-4 would be distributed identically. As expected,
however, the GRYD IR Program events are substantially more
clustered than the non-GRYD events depicted in the rightmost
panel of Figure 2. The temporal distributions of GRYD IR
Program and non-GRYD events in Figures 3 and 4 show the
modest deviations.

Variable selection is done once, using a GAM regression
of total crimes on the covariates listed in Section 2. The fol-
lowing five variables are selected by the stepwise selection
procedure in the R package gam (Hastie 2018) in order to
reduce prediction error and avoid overfitting: income per capita,
unemployment, population density, percent male and percent
single parent families. The estimated additive predictors for
the GAM regression background rate are shown in Figure 5.
Population density and income per capita account appear to
be the most important predictors for this dataset according to
the fitted GAM model for the background rate, with higher
estimated background rates of reported gang-related violent
crimes in areas with high population density and in areas with
low income per capita. A slight increase in the estimated back-
ground rate of reported crimes is associated with areas where
the proportion of males is lower and the percentage of single
parent families is higher, though these effects appear to be rather
minimal.
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Figure 3. Temporal distribution of marks (hourly). (Left to Right): Kernel density of GRYD IR Program crime events, average kernel density of 50 samples of non-GRYD
crimes and remaining unsampled non-GRYD. Dotted: 5th and 95th percentile of 50 estimated kernel densities.
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Figure 4. Temporal distribution of marks (weekly). Proportion of occurrences each day. (Left to Right): GRYD IR Program crime events, average of 50 samples of non-GRYD
crimes and remaining unsampled non-GRYD. Whiskers: 5th and 95th percentile proportion of 50 samples.

The estimated spatial background rates (excluding the non-
stationary component v(t)) for models (II) and (IV) are depicted
in Figure 6. With all three models, the estimated background
rates indicate substantial inhomogeneity. Certain hot spots
are noticeable, such as near Hyde Park (—118.335°, 33.98°)
and Crenshaw (—118.35°, 34.02°) as well as along Normandie
Avenue (longitude —118.3°). The eastern half of the study
region generally appears to have a higher background rate.

4.2. Model Fit and Estimates

Parameter estimates and log-likelihood scores for models fit
using data from 2014 to 2016 are reported in Table 1. Compar-
ison of the fit of models (I), (II), and (III) reveals that all three
have serious inadequacies in untangling causal clustering from
inhomogeneity. Model (I) fits worse than the others as indicated
by its much lower log-likelihood in-sample (for 2014-2016).
Model (I) also fits the worst on the out-of-sample testing data

from 2017. Model (IV) has considerably higher log-likelihood
than the other models, indicating superior fit to the in-sample,
2014-2016 data. In contrast to model (IT), models (III) and (IV)
have a higher log-likelihood while their estimated background
rates attribute more reported crimes to triggering (18% and 22%
respectively).

The variable bandwidth estimate (5) used in model (II)
appears less smooth than model (IV) in Figure 6, and as a result
attributes only 16% of reported crimes to triggering. The back-
ground rate in model (II) uses n, = 15, which is the minimum
recommended number by Fox et al. (2016). The 25th, 50th, and
75th percentile of the varying bandwidths are respectively 275,
351, and 437 m, and is comparable to the bandwidth selected
using Sheather and Jones (1991).

In Table 2, the estimated spatial triggering bandwidth o in
models (I), (IT), and (III) are all very local, between 12 and
15 m, and the respective estimates of the temporal decay w, are
consistently small with a median time to response of almost 180
days. This would suggest that triggered crimes are near-repeat
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Figure 5. Estimated additive predictors of GAM background. Dotted=95% confidence intervals. The y-axes are the individual additive contributions of each covariate
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Figure 6. Estimated spatial background rates. (Left, Right): Kernel smoothed background rate with variable bandwidth and weights of model (Il), generalized additive
model (GAM) background rate of model (IV).

and chronic, and there are few swift retaliations across gang estimated percentage of crimes attributed to background, non-
territories. Model (IV) investigates whether there exists any  triggered crimes (78.2%) in model (IV) is smaller than mod-
additional triggering beyond the scale of census blocks. The els (I), (I), and (III). According to the fitted model (IV), an
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Table 1. Productivity and background rate parameter estimates, log-likelihood.

(Model number): Background type

(Il): Variable
(I): Constant bandwidth/weights (I11): Covariate (IV): Covariate
GRYD IR Program, k1 0.184 0.144 0.172 0.170
(0.018) (0.017) (0.018) (0.020)
non-GRYD, « 0.197 0.170 0.187 0.186
(0.012) 0.011) (0.012) (0.013)
Constant background, ¢ 24.644
(0.560)
GRYD IR Program, «3 (far-field) 0.102
(0.030)
non-GRYD, k4 (far-field) 0.00893
(0.0022)
Percent Background 0.807 0.838 0.818 0.782
Log-likelihood 0 143.17 177.64 187.21
Out-of-sample log-likelihood 0 59.8 734 76.0

NOTE: The standard errors of the parameter estimates are in parentheses. Spatial units are in kilometers and temporal units are in days. Log-likelihoods are the difference
with respect to model (1), where the log-likelihood was —11148.84 and the out-of-sample log-likelihood was —3964.9.

Table 2. Triggering shape parameter estimates.

(Model number): Background type

(I): Variable
(I): Constant bandwidth/weights (ll: Covariate (IV): Covariate
Temporal decay w4 0.00391 0.00389 0.00391 0.00391
(0.00019) (0.00021) (0.00020) (0.00022)
Temporal decay w) (far-field) 0.0519
(0.010)
Spatial triggering bandwidth o 0.0151 0.0121 0.0139 0.0138
(0.001) (0.0009) (0.0010) (0.0011)
Spatial triggering bandwidth o (far-field) 0.200
(0.010)

NOTE: The standard errors of the parameter estimates are in parentheses. Spatial units are in kilometers and temporal units are in days.

estimated 18.1% of crimes in this dataset are triggered within
the scale of a census block and 3.7% are triggered by preceding
crimes occurring at least 130 m away. These estimates are found
by a weighted average of (k1, k2) and (k3, k4), respectively. The
estimated spatial bandwidth for the far-field triggering is 200 m
and the estimated median time to retaliation is 13 days. Thus,
the fitted parameters in model (IV) suggest that there exists a
small but nontrivial amount of triggering which occurs across
distances of several hundred meters within short inter-event
times.

4.3. Out-of-Sample Evaluation

The log-likelihood evaluated on the testing data using models
with parameters estimated using only data from 2014 to 2016
and assessed on data from 2017 as a proper predictive score are
listed in the bottom row of Table 1. The constant background
model (I) offers a poor fit compared to all models. Between
models (IIT) and (IV), the more complex model (IV) has slightly
higher out-of-sample log-likelihood while both out-performed
model (II). The results suggest that the superior in-sample fit of
models (IIT) and (IV) relative to (II) is not a result of over-fitting.

Superthinned residuals are shown in Figure 7. Model (I)
shows clustering of residual points east of Normandie Avenue
and sparsity in the North Western quarter of the observation
region. There is identifiable clustering (underprediction) in
northern census blocks for model (II) while the covariate model
(IV) does not exhibit this feature. The temporal distribution

of the residuals, shown in Figure 8, shows significant depar-
tures from uniformity for models (I) and (II), which appear to
significantly underpredict crimes in June and July, 2017. The
temporal distribution of residuals for model (IV), meanwhile,
has no significant departures from uniformity. No noticeable
differences between the spatial distribution of residuals were
observed for any of the models between the first half of 2017
and the second half of 2017. The spatial distribution of the
residuals are examined in Figure 9. Significant departures from
homogeneity are seen for model (I). Model (IV) appears to be
slightly more close to homogeneity compared to model (II).

4.4. Efficacy of the GRYD Program

Table 3 shows the average of 50 estimates of model (IV) using all
4 years of data with sampled non-GRYD control marks detailed
in Section 3.5. The estimated productivities show that the GRYD
IR Program appears to have an effect on reducing triggered
reported gang-related violent crimes. For distances less than
130 m within census blocks, the GRYD IR Program appears
to reduce retaliation rates from 0.240 to 0.206 retaliations per
crime, for a decrease of 14.2%, compared with events in similar
locations but without the GRYD IR Program. Over distances
greater than 130 m, the GRYD IR Program appears to reduce
retaliatory triggering rates from 0.197 to 0.161 retaliations per
crime, for a decrease of 18.3%. Note that the estimated pro-
ductivities for GRYD IR Program and non-GRYD crimes in
Table 1 offer a biased estimate of the impact of GRYD IR
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Figure 8. Temporal distribution of superthinned residuals. Cumulative number of
superthinned residuals over time in 2017, for models (1), (Il), and (IV). Dotted curves
are 95% confidence bounds for a stationary Poisson process.

Program violence interruptions because they are not a ran-
dom assignment over space and time, as seen in Figures 2-
4. The parameter estimates in Table 3 are preferable for this
purpose.

A measure of precision for the percentage decrease in pro-
ductivity can be obtained using standard errors reported in
Table 3 and simulating percentage differences. However, this
is only approximate as we assume that parameter estimates
are normally distributed (Ogata 1978) and independent. Also,
parameter estimates and standard errors were subject to further
variability as the values in Table 3 are an average of estimates
from 50 resampled marks from weights (15). Only 8.5% of
simulated percentage changes were positive for the program’s
effect on the productivity of retaliations within 130 m, while 22%
were positive for retaliations over 130 m away.

5. Discussion

This paper proposes an algorithm to non-parametrically esti-
mate the background rate of a marked spatial-temporal point
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Figure 9. Spatial distribution of superthinned residuals. Cumulative proportion of
superthinned residuals over space, sweeping horizontally from left to right for mod-

els (1), (1), and (IV). Dotted curves are 95% confidence bounds for a homogeneous
Poisson process.

Table 3. Estimated productivity and smoothing weights for sampled controls.

Model (IV) with
sub-sampled control marks

GRYD IR Program, k1 0.206
0.017)
Sampled non-GRYD controls, 3 0.240
(0.018)
Remaining non-GRYD, «3 0.196
(0.014)
GRYD IR Program, «4 (far-field) 0.161
(0.033)
Sampled non-GRYD controls, x5 (far-field) 0.197
(0.033)
Remaining non-GRYD, k¢ (far-field) 0.0002
(0.0028)
Log-likelihood —14610.16

Average standard errors of the parameter estimates are in parentheses. Data from
1/1/2014 t0 12/31/2017 are used.
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process model using spatial covariates. After fitting a variety
of models designed to describe the inhomogeneity in the
background rate as accurately as possible, we find evidence
of chronic, near-repeat clustering within the scale of a census
block. For models (I), (II), and (III), this sub-census block clus-
tering dominated the estimated triggering parameters, which
suggested that almost no retaliations occur swiftly across gang
territories. Model (IV) performed better both within and out-
of-sample, and its fitted parameters suggest that an estimated
18.1% of reported crimes in this dataset occur in a slow and
chronic response to preceding crimes occurring within the scale
of a census block and 3.7% are swift retaliations to preceding
crimes occurring at least 130 meters away.

To evaluate the efficacy of the GRYD IR Program, we propose
a sampling method to find a subset of un-intervened crimes to
serve as controls. This revealed that, after accounting for the fact
that GRYD IR Program violence interruption efforts occurred in
locations of generally high rates of gang-related violent crimes,
the GRYD IR Program appears to reduce reported retaliations
occurring 130 m away or more by approximately 18.3%, and
appear to decrease reported retaliations within 130 m of the
original reported crime by 14.2%. The uncertainty in these
reductions is an important subject for future research. While
we have reported the standard errors for the parameter esti-
mates, future work will focus on further quantifying uncertainty,
using simulation-based approaches as well as methods based
on the Fisher information for point process parameters (Ogata
1978), in such functions of these parameters, including esti-
mated differences between two parameter estimates that might
be correlated.

Methods for bandwidth selection are critical when using ker-
nel smoothing methods for background rate estimates, which
can in turn have a large impact on estimates of triggering, as
any observations not attributed by the model to the background
rate are necessarily attributed to retaliation. To allow for more
accurate estimation, we use variable bandwidth kernel smooth-
ing, allowing the bandwidths used in the estimation of the back-
ground rate to be different from those governing the triggering
kernel. Over-fitting is also a serious concern, and we find no
evidence here of over-fitting for model (III) and (IV), which
offer superior fit to the data from 2014 to 2016 used in the model
fitting, as well as high log-likelihoods evaluated on external data
from 2017 used for testing compared to models (I) and (II).
Therefore, using covariates to estimate the background rate,
rather than simply smoothing over the observed points, appears
to be preferable. An important subject for future research is the
detailed investigation into the relative importance of covariates
on the estimated background rate and predictive performance
of the model.

The results hold important policy implications for designing,
implementing and evaluating comprehensive gang violence pre-
vention programs (see Spergel 1995; Office of Juvenile Justice
and Delinquancy Prevention 2009; Gravel et al. 2013). GRYD
is organized around community engagement, gang prevention
and intervention, and violence interruption efforts (Tremblay
et al. 2020). Our results show that GRYD’s violence interrup-
tion efforts, termed the GRYD Incident Response (IR) Pro-
gram, do work. Using the productivities estimated for Model
IV, every 100 reported gang-related violent crimes produces on

average 43.7 retaliations (24 near-field and 19.7 far-field), when
there is no GRYD response. When GRYD Incident Response
is notified, the estimated number of retaliations falls to 36.7
for every 100 reported gang-related violent crimes (20.6 near-
field and 16.1 far-field). Cities can benefit by including violence
interruption in their comprehensive gang violence prevention
plans. Our results also suggest that there is room to expand
violence interruption in Los Angeles. Nearly 70% (2527 of
3627) of the gang-related violent crimes nominally eligible for
violence interruption were not exposed to GRYD IR efforts.
While the exposure imbalance created unique opportunities to
evaluate the GRYD IR Program, it also suggests that the overall
reduction in retaliations could have been even greater had more
events been similarly exposed. However, GRYD IR Program
resources are limited and choices therefore need to be made
about which events are critical to respond to. Policy makers can
consider incrementally expanding violence interruption efforts
and assessing their effects. Our results suggest that violence
interruption is unlikely to eliminate all reported retaliations. We
therefore might expect to reach a point of diminishing returns.
Where this point may lie is an open question.

Our analyses also highlight a key distinction between back-
ground and triggered crimes. Model IV estimated that 78.2% of
reported gang violent crimes can be attributed to background
processes. The remainder is split between near-field triggering
(18.1%), within 130 m of a parent crime, and far-field triggering
(3.7%), beyond 130 m from a parent crime. That retaliations
appear to happen more often close-by is consistent with the
idea that gang-related violence clusters in contested spaces such
as near territorial boundaries (Brantingham et al. 2012). These
are locations where rivals are more likely to meet, encouraging
spontaneous attacks, and also are known places to seek retribu-
tion. However, the median time to a reported retaliation in the
near-field is close to 180 days. Thus, while the risk of retaliation
close-by a parent crime is quite high, it is a chronic, rather than
an acute risk. There is much less far-field triggering (beyond
130 m), but it tends to occur quickly, with a median time of
13 days. This is consistent with gang rivalries extending across
neighborhoods (Papachristos 2009; Brantingham et al. 2019).
These observations are important for the tactical implemen-
tation of violence interruption programs. Specifically, events
that prompt violence interruption may require resources to be
deployed immediately to contend with fast retribution in far-
field spaces (i.e., beyond 130 m from the parent). However, the
bulk of these resources need to deal with the chronic threat to
the immediate area that can last over months. Thus, immediate
incident response should naturally extend to proactive peace-
making (Tremblay et al. 2020).

GRYD IR is focused on stopping retaliations. This leaves
open the question of how to deal with the estimated 78.2%
of reported gang violent crimes that arise from background
processes. It is impractical to think that community interven-
tion workers (CIWs) can intervene in all of the situations that
might trigger a spontaneous violent crime. Rather, these are
events where we expect GRYD community engagement and
gang prevention and intervention efforts to have an important
effect. Comprehensive violence prevention programs are about
changing the so-called root causes of gang violence in addi-
tion to dealing with the acute consequences. The “root causes”



ultimately contribute to the background processes that drive
spontaneous gang related crimes. However, the impact of these
efforts is certainly indirect and likely to play out over rela-
tively long periods of time. In other words, comprehensive gang
violence prevention programs can hope to reduce retaliations
relatively quickly, but are likely to reduce background crimes
relatively slowly.
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