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Abstract—Koopman operator theory, applied via numerical
techniques such as dynamic mode decomposition (DMD) and
autoencoders, has recently emerged as an interesting mathemati-
cal framework for understanding how complex, high-dimensional
dynamical systems evolve. In this paper, we apply several DMD
and autoencoder algorithms to a dataset of gang involvement
and activity to assess the effectiveness City of Los Angeles
Mayor’s Office of Gang Reduction and Youth Development’s
(GRYD) Intervention Family Case Management Program. We
compare various subsets of the data to explore differences in
sub-populations. We then control for different covariates in our
analysis of dynamical changes in population characteristics over
time. Statistically significant results suggest the efficacy of the
GRYD FCM Program.

Index Terms—dynamic mode decomposition, gang member-
ship, gang activity, autoencoder

I. INTRODUCTION

Various institutional, non-profit, and government groups
have introduced programs whose goal is to ameliorate gang
crime and activity in their communities [1]–[5]. In particular,
the City of Los Angeles Mayor’s Office of Gang Reduction
& Youth Development (GRYD) was established in 2008 to
fund and oversee gang prevention and intervention services in
various areas across the city [6]. GRYD Prevention services are
aimed at building resilience to risk factors among at-risk youth
(ages 10–15) to reduce the likelihood that they join gangs.
GRYD Intervention Family Case Management (FCM) services
are aimed at increasing youth and family protective factors
and resiliency while also reducing gang embeddedness for
gang-involved youth and young adults (ages 14-25). Although
eligibility for intervention services is not determined using
an eligibility tool [6], referrals to the program complete the
Social Embeddedness Tool (SET) questionnaire. The SET
questionnaire is intended to assess gang involvement and
activity, but it also asks about other important covariates such
as lifestyle, family life, gender, age, etc. Additionally, GRYD
FCM Providers record the problems and strategies identified
by participants and the FCM Strategy Team when building
case plans. Both the SET data and the additional data on

participant problems and strategies to address the problem
were used in this analysis. Some who participate in GRYD
FCM services complete the SET questionnaire multiple times,
yielding insight into the effectiveness of GRYD FCM services
in reducing individual gang involvement and activity.

We model SET responses at different points in time as
sample points on the manifold of a highly non-linear dy-
namical system whose time evolution operator is unknown.
Notationally, we let M ⊂ Rm be a dynamical system on a
finite-dimensional manifold which evolves according to the
equation

zk+1 = ϕ(zk), (1)

where zk represents the state of a system at time k and ϕ :
M→M is a map that advances the system one step forward
in time. Then we can define the Koopman operator Kϕ which
acts on scalar functions f :M→ R such that

Kϕf(z) = f ◦ ϕ(z) (2)

for all z ∈M [7]–[10].
Given a set of scalar observations of the system fk, predict-

ing the same set of observations one step forward in time is
equivalent to applying the Koopman operator to fk, i.e.

fk+1 = f(zk+1) = f ◦ ϕ(zk) = Kϕf(zk) = Kϕ(fk). (3)

The Koopman operator is infinite-dimensional; however, it is
linear with respect to the space of scalar mappings f :M→
R, unlike ϕ which is nonlinear. Therefore, we approximate the
Koopman operator—and hence, the dynamics of the system—
via a finite-dimensional linear operator (i.e., a matrix) [11].
Numerical approaches for forming and studying the spectra of
such linear approximations to the Koopman operator include
dynamic mode decomposition (DMD) [12]–[15] and autoen-
coders [16]–[18].

II. SET DATA

The Social Embeddedness Tool (SET) is an extensive ques-
tionnaire aimed at assessing the embeddedness (i.e., how close
an individual is to the center of the gang) and other related
factors of gang-involved youth and young adults (ages 14–25).978-1-7281-6251-5/20/$31.00 ©2020 IEEE



SET questions fall into four categories: Self, Family, Group,
and Other Group. Questions in the Self category concern
a individual’s understanding of the gang in which they are
involved, as well as personal characteristics such as behavioral
norms and attitudes towards impulsive risk taking. The Family
category focuses on a participant’s connection to their family
and its behaviors. The Group category includes questions that
evaluate a participant’s attachment to the gang and its nature,
whereas Other Group contains such questions corresponding
to one other social group in which a participant is intensively
involved. The other group can be either prosocial or antisocial.

As of March 2019, 1,998 individuals completed a total of
3,416 SET questionnaires. Of those, 548 participants com-
pleted the questionnaire more than once, and 71 participants
completed it three times or more. Due to the shortage of mul-
tiple SET-Retests for single participants, the present analysis
focuses exclusively on discovering the dynamics in response
to a first cycle of GRYD FCM services, meaning that only
the SET-Intake and the first SET-Retest are used. A cycle
of GRYD FCM services typically lasts six months. There
is insufficient data to make reasonable conclusions about the
effects of “Other Group” characteristics on individuals’ gang
involvement since only 57.66% of the 548 participants are
members of another social group other than a primary gang
and there is a great deal of diversity as to what these other
groups are. Therefore, we discard the questions in this category
and focus on the other three categories, which include 61
overall measurable questions. After removing responses with
missing entries and errors, we have SET-Intake and SET-Retest
questionnaires from 363 unique individuals. Of these, 62.53%
are male, 37.47% are female, 34.71% 19 years of age or older,
and 65.29% are below the age of 19.

For uniformity of the analysis, all the questions are rescaled
so that 0 is always the lowest possible answer and that 1 is
the highest possible answer. A lower answer represents less
gang involvement and/or less gang activity. In this work, SET-
Intake and SET-Retest data are arranged into matrices X and
Y respectively. The ith column vector of X and Y are the
SET-Intake and SET-Retest from the ith participant, and the
jth entry of the vector is the ith participant’s answer to the jth

question. Thus, we have X ,Y ∈ R61×363.

III. DMD ANALYSIS

First proposed by Schmid [12] to study fluid dynamics,
dynamic mode decomposition (DMD) has gained popularity
due to its semantic interpretability and ability to deal with
non-linear dynamics. Although there are several state-of-the-
art variants of DMD, these methods share a common goal of
finding an appropriate matrix A such that Y ≈ AX given input
data X and output data Y , i.e. A approximates the Koopman
operator. Spectral analysis on A can then yield insights into
the dynamics of the original system. In particular, the norm
of an eigenvalue λ of A specifies the growth or decay of
the corresponding eigenvector. In our case, ‖λ‖ less than 1
suggests a decay in gang involvement, and ‖λ‖ greater than 1
suggests an increase in gang involvement.

We note that a common alternative to DMD is principal
component analysis (PCA), also called proper orthogonal
decomposition (POD). DMD has been found to possess several
advantages over PCA. For instance, [12] notes that DMD
applies directly to data, while PCA only processes second-
order statistics of a dataset. Moreover, [19] observes that DMD
yields future state predictions for any time t, unlike PCA,
which would require solves for each t. They also remark
that DMD-based robust PCA can outperform L1 optimization
methods by 3-4 orders of magnitude [20].

A. Exact DMD
Exact DMD [13] provides an efficient way to solve the

least-squares problem Y = AX , which has the analytical
solution A = Y X+ (where X+ is the right pseudoinverse
of X). Instead of directly analyzing the eigendecomposition
of A, which can be prohibitively computationally expensive,
Exact DMD uses the singular value decomposition (SVD)
to compute a reduced-order matrix Ã whose eigenvalues
belong to the spectrum of A and whose eigenvectors are
connected to those of A by conjugate matrices. The algorithm
is summarized in Algorithm 1.

Algorithm 1: Exact Dynamic Mode Decomposition
Input: X,Y ∈ Rm×n and r ∈ R

1 Compute the Singular Value Decomposition (SVD) of X = UΣV ∗.
2 We “trim” our basis to obtain approximations for input and output

matrices. Define X̃ = U∗
rX , Ỹ = U∗

r Y where Ur is the
projection of U onto the first r modes.

3 Derive Ã = Ỹ VrΣ−1
r where Vr and Σr are projections of V and

Σ to their first r modes respectively.
4 Compute the eigendecomposition of Ã.

We demonstrate the results of Exact DMD on the SET data
for GRYD FCM participants in Figure 1, which plots the
spectrum of A. Note that the real parts of the logarithm of
all 30 eigenvalues are negative, suggesting a major decay of
gang involvement and activity after a single cycle of GRYD
FCM services.

B. Consistent DMD
Consistent DMD [21] is an alternative method to compute

the dynamic mode decomposition evolution matrix A. The
central difference of Consistent DMD is that it takes into
account both forward and backward dynamics in order to
diminish the effect of noise in the data. Mathematically, one
can pose the dynamics of the system as

Forward Dynamics: Y = AX

Backward Dynamics: X = A−1Y.

Then, Consistent DMD seeks an A which solves the optimiza-
tion problem

min
A

1

2
|AX − Y |F +

1

2

∣∣A−1Y −X
∣∣
F
,

where |·|F is the Frobenius norm. By change of variables, the
constrained minimization problem

min
A,B

1
2 |AX − Y |F + 1

2 |BY −X|F such that AB = I,BA = I



Fig. 1. Plot of the distribution of the logarithm of eigenvalues of A derived
from Exact DMD. In this and similar plots throughout the paper, the shaded
polygon indicates the convex hull of the points, which gives a general idea
of the distribution of the eigenvalues and the dynamics. Positive real parts
of the eigenvalue logarithms indicate growing modes, whereas negative real
parts suggest decaying modes. The imaginary parts do not have a strong
semantic interpretation on their own, but eigenvalues with larger overall norms
contribute more to the dynamics of the system, as in similar techniques like
principal component analysis.

can be solved efficiently using the Alternating Method of
Multipliers [22]. This implementation of Consistent DMD is
summarized in Algorithm 2.

Figure 2 shows that, when using Consistent DMD, all
30 eigenvalues of the evolution matrix A have a norm less
than 1, which agrees with the results obtained via Exact
DMD. However, there is a distinct difference between the
range of Re(log(eigenvalue)) of Exact DMD and that of
Consistent DMD. Nonetheless, the fact that all modes appear
to be decaying with both methods is suggestive of the overall
efficacy of GRYD FCM services.

Algorithm 2: Consistent Dynamic Mode Decomposition
Input: X,Y ∈ Rm×n and r, ρ ∈ R

1 Compute the SVD of X = UΣV ∗.
2 Define X̃ = U∗

rX , Ỹ = U∗
r Y where Ur is the projection of U

onto the first r modes.
3 Define A0 = Ỹ X̃+, B0 = X̃Ỹ +, Q0 = 0, Q ∈ R2r×r

4 for k = 0, 1, 2, ... do
5 Ak+1 = Sylvester(C1, C2, C3)
6 Bk+1 = Sylvester(D1, D2, D3)

7 where Q =

(
Q1

Q2

)
, Q1, Q2 ∈ Rr×r

C1 = ρ(Bk)TBk

C2 = X̃X̃T + ρBk(Bk)T

C3 = Ỹ X̃T + 2ρ(Bk)T − ρQk
1(Bk)T − ρ(Bk)TQk

2
D1 = ρ(Ak+1)TAk+1

D2 = Ỹ Ỹ T + ρAk+1(Ak+1)T

D3 = X̃Ỹ T + 2ρ(Ak+1)T − ρQk
1(Ak+1)T − ρ(Ak+1)TQk

2

8 Qk+1 = Qk +

(
Ak+1Bk+1 − I
Bk+1Ak+1 − I

)
9 Update ρ for faster convergence.

10 end
11 Compute the eigendecomposition of A.

For a more detailed understanding of the effectiveness of
the GRYD FCM Program, we study the separate dynamics

Fig. 2. Consistent DMD Log(Eigenvalue)

Fig. 3. “Self” Log(Eigenvalue)

of responses each of the three categories of questions: Self,
Family, and Group.

1) Self: Figure 3 shows that the real part of the logarithm
of every eigenvalue is negative, suggesting an overall decrease
in the participants’ risk level in the Self category. Hence, one
can conclude that participants generally experienced positive
self-growth between SET-Intake and SET-Retest evaluations.

2) Family: Figure 4 shows that though 7 out of 31 eigen-
values have norm greater than 1, the majority of the modes
are clearly decaying; moreover, the eigenvalues with negative
real components have larger magnitudes than those which have
positive real components. Hence, we observe that participants
generally experienced decreasing risk levels related to family
life over the course of one GRYD FCM services cycle.

To better study the dynamics of the Family category, we
conduct a subgroup analysis where participants are character-
ized based on their sex and age. Out of 363 participants, 153
are male aged 18 or younger, 74 are male aged 19 or older,
84 are female aged 18 or younger, and 52 are female aged 19
or older.

Figure 5 gives a visual representation of the dynamics of
these subgroups. We observe that when the sex of a group is
fixed, results for the younger group cluster around Re(z) = 0,
whereas those for the elder group are distributed more widely
across the plane. This suggests that older participants in GRYD
FCM services have greater variance in outcomes, and also that



Fig. 4. “Family” Log(Eigenvalue)

Fig. 5. Plot of the log of eigenvalues of the four groups of participants in the
category of Family. The figure highlights the comparison between two groups
that have the same sex but different age range.

they can have more extreme changes (positive or negative) than
what is observed for younger participants.

3) Group: The Group category displays more complex
dynamics than the Self and Family categories. Figure 6 shows
that 8 out of 18 eigenvalues have a norm greater than 1, and
they do not cluster near Re(z) = 0, suggesting the presence of
a non-negligible growing force. Hence we conclude that some
features of risk associated with groups are growing, while
others are decaying.

Figure 7 shows the subgroup dynamics of the category
of Group. Compared with the Family category questions,
in which age is significant in determining the dynamics,
the primary distinction is by gender for the Group category

Fig. 6. “Group” Log(Eigenvalue)

Fig. 7. Plot of the logarithm of eigenvalues of the four groups of participants
in the category of Group. The plot visually demonstrates the comparison
between two groups of the same age range but different sex. Note that while
eigenvalues occur in complex conjugate pairs, logarithms of negative real
eigenvalues will have a fixed imaginary part of πi and hence the shaded
polygons may not be symmetric.

questions. There is much greater variability in the dynamics
for females in both age groups. Males are less likely to change
in the Group category questions after the first cycle of GRYD
FCM services in both age groups.

C. DMD with Control

DMD with Control [23] is a modified version of Exact DMD
that incorporates the effect of control variables to disambiguate
between the underlying dynamics and external actuation, e.g.,
GRYD FCM services. Instead of just dealing with the input
matrix X ∈ Rm×n and the output matrix Y ∈ Rm×n, a matrix



Υ ∈ Rl×n with snapshots of the state of the control variables
introduced into the system. Mathematically, we aim to find the
appropriate matrix A and B such that

Y ≈ AX +BΥ.

The obtained matrix A represents the dynamics when the
intervention is hypothetically not present. This method is
especially useful when it is impossible to get data free from
the effect of the stimuli.

Algorithm 3: Dynamic Mode Decomposition with Control

Input: X,Y ∈ Rm×n,Υ ∈ Rl×n and p, r ∈ R
1 Define Ω =

(
X
Υ

)
2 Compute the SVD of Ω =

(
U1

U2

)
ΣV ∗ ≈

(
U1p

U2p

)
ΣpV ∗

p

3 Compute the SVD of Y = ŨΣ̃Ṽ ∗ ≈ ŨrΣ̃rṼ ∗
r

4 Compute A = Y Ṽ Σ̃−1Ũ∗
1 and B = Y Ṽ Σ̃−1Ũ∗

2
5 Compute the eigendecomposition of A

For the GRYD dataset, we assume there are underlying dy-
namics for individuals’ responses when intervention is absent
and that GRYD FCM services are the actuation. To ensure the
changes in individuals’ responses, before and after a program
cycle, are not solely due to the effect of time, we compare
the dynamics derived from Exact DMD and that from DMD
with Control. In this work, we use each of the five categories
of GRYD treatment strategies as control variables. These five
categories are mentorship for school/job readiness, substance
abuse/anger management/life skill classes, community service,
“40 Developmental Assets,” and counseling service. For every
category, if the participant has adopted the strategy, 1 is
assigned to the corresponding entry in Υ, and if not, 0 is
assigned. Mathematically we have

R5×n 3 Υ =

 | | |
v1 v2 · · · vn
| | |

 where vi =


Mentorship
Life Skill

Community
40 DA

Counseling


For example, if vi =

[
1 0 1 0 0

]T
, then the ith

participant has received mentorship for school and work and
has participated in community service. We note that not every
participant has a record of the strategies they took during the
first cycle of the program; out of the 363 participants who
completed the SET-Intake and SET-Retest, only 204 of them
have data for Υ.

Figure 8 shows that all the eigenvalues derived from Ex-
act DMD and DMD with Control have norm less than 1,
suggesting overall decaying dynamics for both actual and
hypothetical scenarios. It is also evident that the logarithm
of eigenvalues derived from DMD with Control distribute
more closely to Re(z) = 0, which means that GRYD FCM
services contribute to a greater reduction of gang involvement
and activity after controlling for treatment strategies. One

Fig. 8. Plot of the distribution of logarithm of eigenvalues of A derived from
Exact DMD and DMD with Control. The blue markers and light blue region
visually represent the dynamics when GRYD is viewed as endogenous for
the system. The red markers and red region show the dynamics of the same
participants when GRYD is hypothetically not in action.

may conclude that the GRYD FCM Program is succeeding
in transferring attachments from gangs to positive activities.

1) Statistical Analysis: To quantitatively study the effec-
tiveness of GRYD FCM services, we conduct a statistical
analysis on the obtained dynamics. For every SET-Intake
response xi, the predicted SET-Retest response when GRYD
FCM services are hypothetically not in action is calculated and
denoted as ȳi with ȳi = Ū ĀŪ∗xi, where Ā and Ū represent
matrices A and Ũr derived from DMD with Control. Thus, we
have two samples of SET-Retest responses, the first being the
actual SET-Retest answers from participants, and the second
being the set of ȳi. We then conduct a kernel two-sample test
[24] on the data. The kernel two-sample test uses maximum
mean discrepancy (MMD) as the test statistic, and when MMD
is greater than the threshold derived from bootstrapping, the
null hypothesis is rejected. In our case, we have a statistic
of 8.6259 and a threshold of 2.1259, suggesting that the
difference between the actual SET-Retest responses and the
hypothetical ones is statistically significant. Thus, according
to this analysis, GRYD FCM services are statistically signifi-
cantly effective in reducing gang involvement and activity.

IV. AUTOENCODER ANALYSIS

The DMD algorithms discussed so far enable semantic
interpretation of the modes of the approximate Koopman
operator. However, a related task is also of interest: pre-
dicting individual’s SET-Retest scores from their SET-Intake
responses. This yields another view of the effectiveness of
GRYD FCM services. For this task, we consider an additional
approach for finding a finite dimensional approximation to the
Koopman operator, namely, autoencoders. We assume there
exists a (non-linear) transformation χ : M → Rκ that maps
the data from the observation space into a κ-dimensional latent
space in which the Koopman operator can be approximated.
Thus, we hope to find such a transformation χ and a real
matrix C ∈ Rκ×κ such that

Kϕ ≈ χ−1 ◦ C ◦ χ, (4)



or equivalently,

C ≈ χ ◦ Kϕ ◦ χ−1. (5)

Therefore, our autoencoder network must both (1) accurately
encode all observations in a κ-dimensional latent space and
(2) discover a matrix that accurately encodes the dynamics of
the system in the latent space.

In practice, such a transformation χ and its inverse χ−1

can be found via deep learning, by defining neural networks
χe and χd (the encoder and decoder, respectively) such that
χe ≈ χ and χd ≈ χ−1. Then, given a set of observations of
the system fk at time k, we can predict future observations
one step forward in time by

f̂k+1 = χd ◦ C ◦ χe(fk). (6)

A. Consistent Dynamics

Similar to DMD, to add consistency to our Koopman
autoencoder, we assume there exist backward dynamics that
can be encoded in the latent space by a matrix D ∈ Rκ×κ,
where D ≈ C−1. Thus, we can generate backward predictions
by

f̌k−1 = χd ◦D ◦ χe(fk). (7)

In Section IV-F, we investigate whether introducing these
consistent dynamics increases the predictive power of our
model.

B. Loss Function

The model parameters (the weights and biases of χe and
χd, and the entries of C and D) were trained according to
a loss term consisting of four terms. The first of these is the
identity loss

Eid =
1

2n

n∑
k=1

‖fk − f̃k‖22, (8)

where n is the total number of observations and f̃k is the
kth observation as reconstructed by the encoder and decoder
network, i.e.

f̃k = χd ◦ χe(fk). (9)

This helps maintain the constraint that χd◦χe ≈ id, so that the
autoencoder accurately encodes the data in the latent space.

Next, there are forward and backward loss terms, which
measure the error of the model’s forward and backward
predictions on the training data. Specifically, these are

Efwd =
1

2n

n∑
k=1

‖f̂k+1 − fk+1‖22 (10)

and

Ebwd =
1

2n

n∑
k=1

‖f̌k−1 − fk−1‖22. (11)

Finally, the consistency loss term, which ensures that the
forward and backward dynamics are consistent (i.e., that
CD ≈ DC ≈ Iκ), is given by

Econ =

κ∑
k=1

1

2k
‖Dk∗C∗k − Ik‖2F +

1

2k
‖Ck∗D∗k − Ik‖2F ,

(12)
where the subscripts k∗ and ∗k denote the first k rows and
the first k columns of a matrix, respectively, and ‖ · ‖F is the
Frobenius norm.

The total loss is then given by

E = λidEid + λfwdEfwd + λbwdEbwd + λconEcon. (13)

For our model, we chose to use the weights λid = λfwd = 1,
λbwd = 0.1, and λcon = 0.01, as our primary focus is placed
on the validity of the autoencoder and the accuracy of the
forward predictions.

To determine whether introducing consistent dynamics im-
proves the performance of the model, we also train a model
where we set λbwd = λcon = 0, effectively neglecting the role
of backward dynamics.

C. Network Architecture

The encoder and decoder layers of our model consist of
three fully-connected layers with tanh activation. These three
hidden layers map the data from dimension m to p, p to p,
and p to κ respectively for the encoder and vice versa for the
decoder, where m is the dimension of the input (the number
of questions per individual), p is a hidden layer dimension,
and κ is the dimension of the latent space.

To determine the optimal dimension of the latent space κ,
we use repeated cross-validation. We train the model on 10
random 80%-20% train-test splits according to Section IV-E,
varying κ between 2 and 29. To avoid an exhaustive search
on (κ, p), and so that the total number of parameters in the
encoder and decoder networks would roughly scale with κ, we
fix p = 2κ. As shown in Figure 9, the model’s mean squared
error (MSE) on validation data over the 10 repeated trials stops
improving significantly after κ = 15, so this is the latent space
dimension we choose for our model.

Likewise, to select the hidden layer size p, we plot the
model’s mean validation loss across 10 trials as we vary p,
with the latent space dimension fixed at κ = 12. We see in
Figure 10 below that p = 24 is a reasonable choice for the
size of the hidden layers in the autoencoder.

D. Autoencoder with Control

Similar to DMD, we implement controls in our autoen-
coder framework by introducing certain demographic variables
into the model. The additional information may allow the
model to better determine the dynamics for the system as a
whole, as it is likely that GRYD FCM services have varying
effects on individuals of different backgrounds. Specifically,
we incorporate each participant’s age and sex as additional
inputs to the model, using one-hot encoding for age (sex was
binary, and thus left as a single column). In total, there are 18
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Fig. 9. Mean validation MSE (solid blue line) vs. latent space dimension
(κ) across 10 repeated validation runs (pale dotted lines). Improvements are
insignificant past κ = 12 (vertical dashed line).
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Fig. 10. Mean validation MSE (solid blue line) vs. hidden layer size (p) across
10 repeated validation runs (pale dotted lines). Improvements are insignificant
past p = 24 (vertical dashed line).

unique ages encoded as binary control variables. Aside from
these additional inputs, the rest of the model, including the
architecture and training method, is unchanged.

E. Training Method

We initialize the model such that C and D are random or-
thogonal matrices generated from the O(κ) Haar distribution,
which acts as a uniform distribution on Rκ×κ [25]. This pro-
motes the stability of the model [11], as the eigenvalues of C
and D initially lie on the unit circle in C. The model is trained
using the AdamW optimizer [26] with gradient clipping and
L2 regularization. We use an initial learning rate of 0.01, set
to decay every 50 epochs. For each trial, we randomly split
the data (the SET-Intake SET-Retest response pairs) into 80%
training and 20% testing sets, and then minimize E over 600
epochs. At every epoch, we also calculate the validation loss
as the mean squared error of forward predictions on the testing
set, akin to Efwd in Eq. (10). At the end of the training epochs,
we revert the model to the epoch that minimized validation
loss, effectively implementing after-the-fact early stopping to
avoid overfitting.

F. Results

To assess the predictive power of the various states of
our model, we train four different configurations, representing
combinations of control/no control and consistent dynamics/no
consistent dynamics. We train the model over 100 trials, with
each trial representing a different 80%-20% train-test data
split, and record the minimum mean squared error (MSE) of
the various model configurations on the testing data. The mean
and standard deviation of the test MSE across 100 trials for
each model configuration are recorded in Table I.

TABLE I
MEAN AND STANDARD DEVIATION OF VALIDATION MSE (OVER N=100

TRIALS), BY AUTOENCODER CONFIGURATION

Consistent dynamics
Yes No

Control
Yes Mean: 0.05028

SD: 0.00416
Mean: 0.05050
SD: 0.00404

No Mean: 0.04926
SD: 0.00412

Mean: 0.04924
SD: 0.00426

The results in Table I show that the model configuration
with the lowest validation MSE was the autoencoder with no
consistent dynamics and no control. However, to test whether
this result is statistically significant, we perform a two-way
repeated measures ANOVA. Each of the 100 trials is treated
as a subject (as it is likely that the exact 80%-20% data split
has a non-negligible effect on the performance of each model),
consistent dynamics and control are treated as within-subjects
factors (with two levels each, yes and no), and validation MSE
is treated as the dependent variable. ANOVA is based on two
assumptions: (1) that the samples are drawn from Normal
distributions, and (2) that the variances of the differences
between all possible combinations of within-subject factors are
equal, i.e. sphericity. [27] raises concern over ANOVA’s use
in cases where these assumptions are violated. However, our
data passes the Shapiro-Wilk test of normality for all possible
combinations of the within-subject factors (p > 0.05) as shown
in Table II, indicating that we cannot reject the null hypothesis
that the validation MSEs are drawn from normal distributions
for each possible model configuration. Second, our experiment
automatically passes Mauchly’s sphericity test, as sphericity is
always met for within-subjects factors with two levels [28].

TABLE II
SHAPIRO-WILK TEST OF NORMALITY

Consistent Control variable statistic p
1 0 0 MSE 0.984 0.287
2 0 1 MSE 0.985 0.309
3 1 0 MSE 0.983 0.221
4 1 1 MSE 0.987 0.449

Therefore, we report the two-way repeated-measures
AVNOA test results for the within-subject effects in Table
III. Evidently, of the three effects, only Control is statistically
significant (p < 0.05), so we may only reject the null
hypothesis that the model has equal predictive power with
and without control, and cannot reject the null hypotheses



TABLE III
TWO-WAY REPEATED MEASURES ANOVA

Effect df F value p value
Consistent 1 1.70 0.193

Control 1 212 1.31×10−36

Consistent:Control 1 2.46 0.118

that the model has equal predictive power with and without
consistent dynamics or the interaction of consistent dynamics
with control. Referring back to Table I, we see that adding
control decreases predictive power (increases validation MSE).
Thus, for the sake of minimizing the number of parameters
required for training, we can consider the configuration with
no consistent dynamics and no control to be the best of the
four possible configurations in terms of predictive power.

G. Prediction using DMD and Autoencoder Methods

TABLE IV
MEAN AND STANDARD DEVIATION OF MSE FOR TEST DATA AND ALL

DATA OVER 100 TRIALS

Exact Consistent AutoencoderDMD DMD
MSE (Test)

Mean 0.0453 0.0557 0.0492
Standard 0.0041 0.0056 0.0043Deviation

MSE (All)
Mean 0.0387 0.0472 0.0444

Standard 1.7392×10−4 2.6328×10−4 0.0028Deviation

As can be seen in Table IV, for the task of predicting
SET-Retest values from SET-Intake questionnaire responses,
autoencoder methods outperform Consistent DMD on test data
over 100 trials. Averaged over all data (testing and training),
the autoencoder also outperforms Consistent DMD in terms
of MSE, though in all cases exact DMD slightly outperforms
autoencoders. Although the autoencoder model has strong
predictive power (which could possibly be increased with
additional training, deeper networks, etc.), the DMD models
have the advantage of simplicity and interpretability. For
example, the spectral analysis in the DMD model gives insight
into the dynamics. With autoencoders, any matrix eigenvalues
only give information about dynamics in the latent space,
which may be difficult to translate back to actual dynamics.
Therefore, one might prefer different methods for different
tasks; e.g., using autoencoders to predict SET-Retest scores,
but using DMD techniques for understanding the dynamics of
the modes of the system.

V. DISCUSSION AND FUTURE WORK

This paper studies the dynamics of GRYD FCM services
using Koopman operator theory. Growing and decaying modes
of the system are analyzed using several variants of dynamic
mode decomposition, and autoencoders are used to predict
participants’ retest scores on the SET questionnaire from their
intake responses. Applying these numerical methods yields

several statistically significant conclusions that suggest the
efficacy of the GRYD FCM Program.

There are several opportunities for improving upon the
present work. For example, we conduct our analysis using
only complete samples in the SET data, which restricts our
effective population size and predictive power. Data imputation
techniques [29] like mean imputation or the recently-proposed
GAIN method [30] could be considered to utilize incomplete
samples (while avoiding biasing the imputed data). Further
analysis could consider noise and biases in DMD-based mod-
els, for example as in [31], [32]. Moreover, the techniques
presented in this paper could be applied to related datasets
and issues, e.g. sociological processes which can be modeled
as dynamical systems. The literature describes a number of
datasets related to gangs and youth delinquency, e.g. [33]–
[35], that may be good candidates for analysis using Koopman
theory. Future applications may also include reducing biases in
pretrial risk assessment [36], [37] or evaluating the effective-
ness of various delinquency deterrence programs [38], [39].
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