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Abstract
Purpose  The central premise behind place-based policing is that an intervention narrowly 
targeted to a location is able to suppress crime for some period of time. The crime-free 
survival time in a place ends with prolonged exposure to police action, known as initial 
deterrence decay, or after police have left, known as residual deterrence decay. The purpose 
of the present work is to understand the origin and character of deterrence decay at an 
aggregate spatial scale.
Methods  Deviating from previous efforts that explain deterrence decay based on the 
psychology of offender decision-making, the present work borrows ideas from theoretical 
ecology to model place-based deterrence as a form of competition between police and 
offenders over space. Deterrence decay emerges as a byproduct of this competition.
Results  When measured on an aggregate spatial scale, the model suggests that the waiting 
time to the emergence of crime and disorder from the onset of place-based policing actions 
should be gamma-like in distribution. The waiting time from the end of a place-based police 
action should be exponentially distributed.
Conclusion  If the model is a reasonable approximation of reality, then attempts to schedule 
place-based maintenance visits to counteract deterrence decay may be of limited value.

Keywords  Hot spot policing · Ecological competition · Ordinary differential equations · 
Survival analysis

Introduction

Studies dating back decades show that place-based policing yields measurable reductions 
in crime (Braga 2001; Braga et  al. 2014; Braga and Weisburd 2022). Crime reductions 
are observed following spatially targeted pedestrian stops (Petersen et al. 2023), hotspot 
patrols (Sherman 1990; Braga et  al. 2024), and more substantial forms of place-based 
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environmental modification (MacDonald et al. 2024). However, the effects of place-based 
police are strictly localized. In space, place-based interventions typically suppress crime in 
the immediate vicinity of the action, as well as nearby areas that appear to benefit indirectly 
from crime control measures taken ‘around the corner’ (Clarke and Weisburd 1994; 
Weisburd et al. 2006, 2012). In time, crime reduction begins almost immediately after the 
onset of a place-based intervention and may persist for some time after the visible elements 
of an intervention stop (Koper 1995; Sherman 1990). The widely appreciated policy 
implication is that place-based policing needs to be precisely targeted and periodically 
reinforced (Sherman 1990; Dau et al. 2023).

The apparent need to reinforce placed-based policing interventions is consistent with 
a theory of deterrence focused on offender decision-making processes (Koper 1995; 
Sherman and Weisburd 1995; Nagin 1998; Loughran et al. 2011). Specifically, hot spot 
policing is thought to alter local offenders’ perceptions of the risk of getting caught. The 
initial deterrence effect arises while there is visible police action, including physical 
presence, enforced sanctions, and continued publicity about the action (Sherman 1990). 
Presumably, offenders recognize that committing a crime in plain sight of the police comes 
with a high probability of being caught and punished (Nagin 1998; Loughran et al. 2011). 
The residual deterrence effect, by contrast, is thought to arise after the visible elements 
of police action have ceased. The theory is that, although police are not immediately 
visible, offenders monitoring a targeted place are uncertain about whether patrols will 
soon return. This ambiguity discourages offenders from committing crime (Koper 1995; 
Nagin et al. 2015; Loughran et al. 2011). However, initial and residual deterrence effects 
are not persistent. Limited police resources mean that police must frequently move to 
other places (Sherman 1990). Theory holds that offenders gradually realize that police are 
unlikely to return, reducing the ambiguity surrounding the chance of getting caught. The 
shift in perception allows offenders to return to business as usual, ending the period during 
which the place remained crime-free. Police therefore need to return to that location if 
they wish to restore deterrence.

Several important theoretical and practical questions surround the time it takes for 
crime and disorder to re-emerge given a place-based policing intervention. Sherman (1990) 
identified initial deterrence decay as a process by which offenders learn—by word of mouth 
or trial-and-error experimentation—that they overestimated the risk of getting caught 
despite the continued presence of police. Thus, crime and disorder might re-emerge even 
before a place-based intervention has ended (Sorg et  al. 2013). Sherman also identified 
residual deterrence decay as a similar learning process that operates only after police have 
visibly left a place. If crime and disorder do not re-emerge while police are present, it is 
likely to do so after police have left the scene. In both cases, deterrence decay implies that 
the probability that a place remains crime-free decreases over time. As a theoretical matter, 
the specific functional form that describes deterrence decay may tell us something about the 
mechanisms underlying how offenders select crime sites and evaluate risk. As a practical 
matter, knowing the functional form of deterrence decay may allow police to optimally plan 
the duration and timing of place-based patrols to have a lasting impact on crime (Williams 
and Coupe 2017).

Addressing both issues, Koper (1995), using data from the Minneapolis Preventive 
Patrol Experiment (Sherman and Weisburd 1995), suggested that deterrence decay could be 
slowed (up to a point) by longer place-based patrols. The Minneapolis experiment randomly 
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assigned 29 trained observers across 100 candidate hotspots for 70-minute observation 
windows. Observers recorded the start and end times of police activity and street disorder. 
Koper’s event history analysis of the experimental data focused on the waiting time between 
the end of observed policing events and the start of new disorder events, subject to several 
important data constraints detailed in the study (see Koper 1995:660-61). His analysis 
suggested that patrol stops lasting 11-15 minutes had longer survival times (measured in 
minutes) until the next observed disorder event compared to short “drive-by” patrols (Fig. 
1A). The benefits peaked at approximately 15 minutes of patrol, after which there were no 
clear gains in survival time (Fig. 1B). This core observation about 15-minute place-based 
patrols is widely known among academics and police practitioners as the “Koper Curve” 
(Sherman and Eck 2002).

Subsequent studies have supported the hypothesis that targeted patrols lasting 
approximately 15 minutes outperform call-driven patrol practice and shorter-duration hot 
spot patrols in reducing crime. Telep et al. (2014), for example, conducted a randomized 
controlled trial comparing the outcomes in street segments subject to 12-16 minutes of 
directed patrol every two hours (treatment) with segments subject to incidental routine 
patrol (control). Treated street segments received twice as much patrol time as the control 
segments during the 90-day experiment and saw a significant reduction in both calls-for-
service and Part I crimes. Williams and Coupe (2017) implemented a similar random block 
experimental design comparing treatment hotspots randomly assigned to receive three 
15-minute patrols on some days and nine 5-minute patrols on others. Although patrol dosage 
proved challenging to measure, evidence suggests that fewer, longer patrols in targeted 
hotspots had a larger effect on crime than more frequent, shorter patrols. However, neither 
of the above studies directly investigated the relationship between patrol duration and initial 
or residual deterrence (Telep et al. 2014; Williams and Coupe 2017).

In contrast, Barnes et al. (2020) used a crossover design that randomized treatment 
assignments by day across 15 hotspot locations. Treatment locations received one or 
more targeted police efforts each lasting 5-30 minutes, while control locations received 
business-as-usual patrol. The study did not try to measure the deterrent effects of patrol 
bouts of different lengths, but did examine residual deterrence quantified as the prevalence 
of offending in control hotspots as a function of days since a hotspot was last assigned 
to treatment. They found that 11.4% of control hotspots recorded at least one offense 

Fig. 1  Key features of the Koper Curve. A. The survival probability that a hot spot remains crime free 
over follow-up times up to 30 minutes for short “drive-by” patrols and 11-15 minute patrol visits. B. The 
impact on survival time for patrol visits of increasing duration, peaking at just under 15 minutes. Figures 
recreated from parameters reported in Koper (1995)
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per day on each of the first four days following the last targeted patrol, similar to the 
prevalence under treatment (Barnes et al. 2020). Offending prevalence jumped to 13.9% 
after five days. Although the effect was not significant, the authors suggest that the pattern 
reflects residual deterrence lasting several days after a targeted patrol before “collapsing.” 
Replicating key parts of Barnes et al.’s design, Bland et al. (2021) failed to find a multi-day 
residual deterrent effect, however. Sorg et al. (2013) considered the problem of initial and 
residual deterrence on a larger spatial scale using data from the Philadelphia Foot Patrol 
Experiment. Foot patrols were randomly assigned to 60 treatment beats that contained an 
average of 23.9 street segments each. Beats were patrolled by two-person teams in back-
to-back 8-hour shifts, five days a week, over two phases of deployment lasting 22 and 12 
weeks, respectively. Violent crime declined in treatment beats relative to matched controls 
during both phases of deployment. The observed deterrence effects remained stable during 
the second phase of deployment but decayed during the first phase of deployment, which 
was 10 weeks longer. No residual deterrence effects were observed in treatment beats after 
either deployment phase.

Although each of the above studies tests some aspect of the Koper Curve, they do 
not offer uniform support for place-based residual deterrence effects. They are more 
consistent in their support for initial deterrence effects. With the possible exception of 
Barnes et al. (2020), none of the studies suggest a particular functional form for deterrence 
decay that would support or refute the model proposed by Koper (1995). Clearly, further 
observational and experimental studies of place-based deterrence are still warranted 
(Ariel et al. 2020). Here, however, I take a purely theoretical approach and use a formal 
model to examine some of the mechanisms that might underlie place-based deterrence 
and deterrence decay. The central question is: Can one derive from theory (rather than 
estimate statistically) what deterrence decay should look like? To make progress on this 
question, I turn to ideas that originated in theoretical ecology (Levin 1974; Nee and May 
1992; Tilman 1994) and the study of stochastic dynamical systems, particularly disease 
epidemics (Brauer et al. 2019; Tang et al. 2020). The model developed here tracks the 
proportion of sites or locations in an environment where offending is deterred p1 and the 
proportion of sites that are suitable for crime p2. These are treated as mutually exclusive 
but transitory states requiring periodic renewal or maintenance. The interaction between 
environmental states is modeled using coupled ordinary differential equations, capturing 
in mathematical form the competition between places that are favorable and unfavorable 
for crime. The model provides a way to formally specify the rate at which place-based 
initial deterrence ends λ10 and, separately, the rate at which suitable crime sites are 
discovered λ02. I argue that λ02 is closely related to residual deterrence. Depending on 
how these two rates are combined, we arrive at different theoretical expectations about the 
survival time for a place to remain crime-free. Neither of the theoretical forms looks much 
like the pattern of residual deterrence estimated statistically by Koper (1995).

This last observation is not intended as a criticism of Koper’s foundational work, 
and the following analyses should not be misconstrued as a test of the Koper Curve. 
Rather, the discrepancies in observations stem from differences in methods and modeling 
assumptions. Methodologically, the present paper takes a “first-principles approach” to the 
relationship between policing and place-based deterrence using a range of mathematical 
modeling tools. This is substantially different from the approach taken by Koper who 
started with nearly 17,  000 street-level observations of active policing and disorder 
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events and then proceeded to estimate deterrence effects with event-history statistical 
models (Koper 1995). The model introduced below is concerned with general questions 
of mechanisms and dynamics, not with the experimental design or sampling frames 
needed to estimate deterrence effects from data. The present model also makes important 
simplifying assumptions that are more about spatial processes than about the psychology 
of deterrence (Nagin 1998; Loughran et al. 2011; Nagin et al. 2015). Here, the interactions 
between police and offenders are considered only at an aggregate scale and concern 
primarily the processes by which open space is explored and exploited by both groups. A 
central assumption is that it takes time (and effort) for offenders to find and exploit places 
suitable for crime, and that residual deterrence might emerge from this spatial process. 
The internal cognitive processes in which offenders weigh the risk of getting caught play 
almost no role in what appears below. The assumptions are reasonable and plausible in this 
context, and the modeled results are not widely out of line with what is known empirically 
about patterns of place-based deterrence and deterrence decay. I do not claim that this 
ecologically-inspired model replaces the individual-scale microeconomic or cognitive 
models of place-based deterrence referenced above (Nagin 1998; Loughran et al. 2011). 
Rather, I see aggregate- and individual-scale models as complementary. Future work will 
be needed to understand how they align.

The remainder of this paper is structured as follows. In Section “Deterrence and Crime 
as Place-based Competition”, I describe the elements of the model and illustrate the basic 
dynamics of the idealized system. Section “Place-based Turnover” turns to an analysis of 
the model, focusing on its interpretation in terms of landscape-scale equilibrium processes 
of place-based deterrence and offender crime site selection. The focus is on the landscape-
scale turnover of place-based deterrence and conditions favorable to crime given the model 
system. Section “Deriving Deterrence Decay” turns to the derivation of expressions for 
the crime-free survival time of a place due to initial deterrence, residual deterrence, and 
total deterrence (the combination of initial and residual deterrence). Section “Discussion” 
discusses the implications of the model for both theory and practice and suggests possible 
next steps. Supplementary information includes both Mathematica and Python code 
sufficient to replicate the results and useful for building additional experiments.

Deterrence and Crime as Place-based Competition

In this section, I develop a spatially implicit model that treats place-based policing, on the 
one hand, and offender discovery and exploitation of suitable crime sites, on the other, 
as a form of competition over space (Kohfeld and Sprague 1990). The model is inspired 
by a series of articles originating in theoretical ecology (Levin 1974; Nee and May 1992; 
Tilman 1994). These papers explore the problem of how inferior competitors manage to 
survive in the face of superior competitors that are able to not only colonize and hold open 
space but also displace inferior competitors wherever they are encountered. In general, 
these conditions should lead to competitive exclusion, but in practice inferior competitors 
not only survive but thrive in the face of seeming absolute competitive advantage. A 
solution to this paradox, explored by Tilman (1994), hinges on how inferior competitors 
manage to exploit the gaps in the spatial footprint of superior competitors. Here, the same 
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mechanism is assumed to allow suitable crime sites to persist in the face of effective place-
based policing. The model is then used to explore the temporal patterns generated through 
turnover in places with initial deterrence and sites that are suitable for crime.

Consider as a starting point an abstract environment consisting of N discrete places 
that might host either police or offender activity. The places I have in mind are the micro-
geographic settings common in studies of place-based policing such as street segments 
or sub-neighborhood-sized crime hot spots (Weisburd 2008; Hipp and Williams 2020; 
Mohler et al. 2015). I assume that police activity in any one of these places establishes 
conditions that are locally unfavorable to crime and disorder. The activities that I have in 
mind are those that can be accomplished in relatively short visits as part of a routine police 
patrol (e.g., 15 minutes on average) (Koper 1995; Telep et al. 2014). The model could 
also be framed in terms of other place-based tactics, including problem solving, third-
party policing efforts, or the deployment of surveillance technologies (Groff et al. 2015; 
MacDonald et al. 2024), although possibly with different implied time scales. In contrast, 
offender activity in any one of these places establishes conditions that are favorable or 
suitable for crime. Offender activities that might produce conditions locally favorable or 
unfavorable to crime could include learning about and exploiting static environmental 
characteristics such as vulnerable targets (Nee et  al. 2019) and unintentional (or 
intentional) actions that change local situational conditions (Keizer et al. 2008; Odling-
Smee et al. 1996).

I assume that the conditions unfavorable to crime are competitively superior to the 
conditions favorable to crime. For example, if police activity begins in a location currently 
suitable for crime, then conditions favorable to crime are assumed to be completely 
suppressed. The location immediately becomes unsuitable for crime. This is an extreme 
assumption that is likely violated in real ecological settings. Police may fail to observe 
crime occurring in their midst or may observe crime but exercise discretion and choose 
not to enforce the law. Nevertheless, the extreme assumption provides a useful baseline for 
what a world with absolute local crime suppression might look like. Similarly, if a location 
is currently unfavorable for crime because of active initial deterrence, I also assume that 
offenders are not able to unilaterally override those unfavorable conditions. Initial deterrence 
must end before a location can again become favorable for crime. This is also an extreme 
but useful assumption. In reality, offenders may learn that the risk of apprehension is quite 
low even when the police are nearby (Sherman 1990). In contrast, the absence of initial 
deterrence in a place allows or, more accurately, does not block the emergence of suitable 
crime sites. Rather, because police are absent in such settings, I assume that offenders can 
discover, cultivate, and exploit criminal opportunities there.

In the above formulation, initial deterrence and suitability for crime are mutually 
exclusive spatial states. That is, at any one moment in time, a site can exist only in one of 
three states: (1) initial deterrence; (2) suitable for crime; or (3) neither initial deterrence 
nor suitable for crime (i.e., empty or neutral space). Let P1(t) be the number of sites 
experiencing initial deterrence at time t and P2(t) the number of sites suitable for crime. 
Thus, p1 = P1(t)/N  is the proportion of sites in the environment at time t with active 
deterrence and p2 = P2(t)/N  the proportion of sites suitable for crime. The proportion of 
sites at time t in neither of these two states is 1 − p1 − p2. The core question of interest 
concerns how these proportions evolve over time.
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Here, I introduce a type of epidemiological process that couples change in the proportion 
of space suitable for crime to change in the proportion of space given over to initial 
deterrence. Conceptually, given unlimited personnel, equipment, and communication 
resources, police would be able to establish and maintain place-based initial deterrence 
throughout the environment (i.e., p∗

1 = 1 at equilibrium). Conversely, in the complete 
absence of policing resources and the presence of an unlimited and well-resourced offender 
population, all space would be given over to crime (i.e., p∗

2 = 1 at equilibrium). However, 
realistically, resource constraints limit the ability of police to establish and maintain active 
deterrence everywhere (Sherman 1990), while offender population constraints limit their 
ability to convert all open locations into sites suitable for crime were they free to do so 
(Rossmo and Routledge 1990; Chainey and Lazarus 2021).

To capture these ideas more formally, let c1 be the intrinsic rate at which police 
establish initial deterrence in places throughout the environment and m1 the intrinsic rate 
at which initial deterrence ends in places where it was previously established. Similarly, 
let c2 be the intrinsic rate at which offenders discover and establish places as suitable for 
crime and m2 the intrinsic rate at which those locations cease being suitable.1 I assume 
that each of the parameters is constant because of resource constraints.

Given the above terms, one can write the following spatially implicit2 model consisting 
of coupled Lotka-Volterra-type ordinary differential equations (Levin 1974; Nee and May 
1992; Tilman 1994):

	
dp1

dt
= c1p1(1 − p1) − m1p1 � (1)

	
dp2

dt
= c2p2(1 − p1 − p2) − m2p2 − c1p1p2 � (2)

Equation 1 describes the instantaneous rate of change in the proportion of places p1 with 
initial deterrence. Equation 2 describes the instantaneous rate of change in the proportion 
of places p2 that are suitable for crime. Solving the coupled equations for different 
parameter values produces outcomes where initial deterrence p1 or suitable crime sites 
p2 dominate everywhere, or there is a linearly stable equilibrium with some portion of 
space with active initial deterrence, some proportion of space that is suitable for crime, 
and some proportion of space that is in neither state (Fig. 2) (Tilman 1994). The latter 
case will be the focus in what follows. Mathematica code is provided as supplementary 
information to replicate the behavior of the differential equations. Supplemental Python 
code leverages Euler’s method to simulate the system using discrete equations of the form 
pi(t + ∆t) = pi(t) + f(pi, t)∆t, where pi(t + 1) is the proportion of space in state i in the 
next time step, f(pi, t) is the right-hand side of Eqs. 1 or 2, evaluated using the value of pi 
in the current time step t, and ∆t is the time step size.

1 These terms are related to an SIR-type epidemiological model with a reproductive number for the growth of 
unfavorable or favorable places for crime across the environment given by R0 = c/m.
2 The model is spatially implicit because it tracks global proportions rather than explicit spatial locations at 
which conditions are unfavorable or favorable for crime. Many different spatial arrangements can produce 
the same proportions and thus potentially complex local spatial processes are held in the background.
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The individual terms in Eqs. 1 and 2 have very specific interpretations. The first term 
c1p1(1 − p1) in Eq. 1 indicates that the growth of place-based deterrence is density 
dependent. The proportion of the environment with active deterrence grows rapidly 
from low levels as more resources are put into the field. This suggests that police find it 
progressively easier to establish place-based deterrence as they occupy more space. Density 
dependence could arise if patrol units already established in the p1 proportion of space 
learn something about current conditions that allow the next set of patrol units entering 
the system to find where they need to go more quickly (Famega et al. 2005). Appendix 
A shows that a model with no density dependent growth produces qualitatively similar 
results. Growth is not unbounded, however. Two processes limit the growth of deterrence 
across space. First, growth is slowed by the reduction of open space; i.e., the proportion of 
empty space (1 − p1) tends towards zero as the proportion of space with initial deterrence 
p1 tends towards one. In the absence of other processes, the product p1(1 − p1) leads initial 
deterrence to grow logistically to eventually fill the entire environment. This is a ‘zero-
crime police state’ (Fig. 2A).

The second limit on the growth of initial deterrence starts with the assumption that 
police activity in a place cannot be sustained indefinitely. This assumption is inherent in 
the distinction between initial and residual deterrence made by Sherman (1990). Thus, the 
second term in Eq. 1 −m1p1 forces decay of place-based initial deterrence. However, it is 
critical to note that decay operates in the global proportion of sites with active deterrence 
p1, not in the deterrence observed at any one discrete site. Deterrence decay in Eq. 1 
is proportional; that is, as p1 approaches one, it becomes harder to maintain deterrence 
throughout space, increasing the rate at which deterrence decays to a maximum of m1. 
Intuitively, we can think of global deterrence decay as representing the rising costs of having 
to police more and more space with limited patrol resources.

Note that the growth of deterrence is not impeded by the presence of places suitable 
for crime. Specifically, p2 does not appear explicitly anywhere in Eq. 1. Thus, deterrence 
spreads equally well in open or empty spaces as in places currently suitable for crime. Section 
“Place-based Turnover” below examines more closely the fraction of places in the landscape 
where deterrence is established suppressing local conditions that are suitable for crime.

Fig. 2  Evolution of the proportion of space with active deterrence p1 (blue) and suitable for crime 
p2 (orange). (A) A ‘zero crime police state’ arises when there is no limit to the growth of initial deterrence 
m1 = 0. (B) An ‘abundant crime world’ world that includes all of the terms in Eqs. 1 and 2. Parameters 
are listed below the figures and are chosen so that time units can be interpreted as minutes. Initial 
conditions are p1(0) = p2(0) = 0.001
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The first and second terms in Eq. 1 play off one another such that if m1 > 0 spatial gaps 
in active deterrence are guaranteed to form (Tilman 1994). In Fig. 2B, police establish active 
deterrence over 5% of space at equilibrium, leaving 95% of space potentially open for criminal 
offending. Different parameter values for c1 and m1 will fill space with initial deterrence 
to different degrees. The parameter values in Fig. 2 B are chosen here to be consistent with 
key parts of Koper’s (1995) study. As discussed in more detail below, m1 is chosen so that 
the mean waiting time to the end of initial deterrence is 15 time units (e.g., minutes) and 
c1 = (1 − p∗

1)/m1 assuming p∗
1 = 0.05. Thus, the parameter values produce initial deterrence 

at a low level across space, as is typical of most urban settings under normal policing conditions.
In this idealized world, offending behavior may fill some or all of the spatial gap left by 

global deterrence decay. The first term in Eq. 2 c2p2(1 − p1 − p2) captures this dynamic 
precisely. Note that the proportion of space discovered and made suitable for offending tends 
to grow at a rate proportional to c2p2. This density dependence suggests that it becomes 
easier to discover and establish places as suitable for crime as more of the environment is 
given over to these conditions. This assumption is consistent with both the idea that ‘broken 
windows’ may encourage the spreading of disorder and that crime itself is spatially contagious 
via mechanisms such as near-repeat victimization (Keizer et al. 2008; Townsley et al. 2003). 
However, the spread of suitable places for crime is limited by the proportion of space that is 
under active initial deterrence and the proportion already given over to crime (1 − p1 − p2). 
If this were all that mattered, places suitable for crime would grow to fill all empty space 
without active deterrence. In fact, this propensity is evident in Fig. 2B where, early in the 
time series, the proportion of space suitable for crime overshoots the eventual equilibrium 
value before then decreasing. This happens because deterrence is rare at the outset, allowing 
crime site discovery to proceed at or near its maximum rate. As with place-based deterrence, 
however, I assume that the conditions favorable to crime do not remain continually active. 
That is, suitable crime sites can fall out of favor even without the intervention of police 
and even though crime opportunities remain available. Intuitively, given a finite population 
of offenders exploiting a finite set of locations, it is reasonable to assume that they cannot 
continually monitor or keep track of all of the places that might be suitable for crime, nor 
can they maintain indefinitely the local social networks or environmental cues that make a 
place favorable to crime. Thus, −m2p2 describes the proportionally dependent rate at which 
crime suitability naturally decays. As p2 grows, it becomes proportionally harder to maintain 
favorable conditions for crime across space. Again, this decay in conditions favorable to 
crime is recognized on an aggregate scale across space, not at individual sites.

The third term in Eq. 2 −c1p1p2 describes the asymmetric relationship between deterrence 
and crime. Specifically, active deterrence ‘suppresses’ suitable crime places, which is 
modeled as a negative rate of change in the proportion of sites suitable for crime. Crime 
suppression here is tied to the intrinsic rate at which deterrence grows c1 but varies according 
to the interactions between the proportion of space with active initial deterrence and the 
proportion of space with suitable crime sites. The product c1p1p2 can be conceptualized in 
probabilistic terms: p1 is the probability that initial deterrence is extended to a new random 
location, p2 is the probability that a random location is presently suitable for crime, the 
product is the joint probability that initial deterrence randomly targets a suitable crime site, 
and c1 is the intrinsic rate at which these interactions can happen.3

3 In demographic and epidemiological models p1p2 is interpreted as the random encounter rate between 
individuals of type 1 and 2 in a well-mixed population.
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Place-based suppression removes once suitable crime sites. However, the model 
assumes that there is no interference in the other direction; i.e., there is no complementary 
term −c2p2p1 in Eq. 1 that would capture the idea that crime spreads to suppress active 
initial deterrence. In Eq. 2, the combined result of spatial packing and crime suppression 
is that only a fraction of the space not under active deterrence is converted to sites suitable 
for crime. In Fig. 2B, for example, suitable crime sites at equilibrium take up only 20.0% 
of space, leaving 75.0% of the environment open or free of both active deterrence and 
crime. The situation represented in Fig. 2B is a ‘crime abundant world’ where places 
suitable for crime are more abundant than places with initial deterrence, although most 
places are safe and ‘unpoliced.’

Although not the focus of the present work, it is still important to identify the parameter 
regimes that allow at least some portion of space to be suitable for crime at equilibrium (i.e., 
p∗

2 > 0) while deterrence is also present (i.e., p∗
1 > 0). For Eqs. 1 and 2, suitable crime sites 

exist in the face of initial deterrence as long as (Tilman 1994):

	 c1 > m1 � (3)

	
c2 > c1

(
p∗

1
1 − p∗

1
+ m2

m1

)
� (4)

Equation 3 provides the necessary condition for there to be some amount of initial deterrence 
active across space at equilibrium. Equation 4 then holds (with a narrow window for 
exceptions) that the persistence of favorable conditions for crime requires the intrinsic rate 
at which crime sites are discovered c2 to be greater than the intrinsic rate at which initial 
deterrence is established c1 (Tilman 1994).4 For example, in Fig. 3 the shaded region shows 
values of c1 and c2 that can lead to p∗

1 > 0 and p∗
2 > 0 given m1 = 1.333 and m2 = 1.1333 

as in Fig. 2B. The actual values of c1 and c2 used in Fig. 2B are shown as a red point. 
Intuitively, this means that offenders need to be able to find and exploit open space at an 
intrinsic rate faster than police are able establish deterrence. Although an interesting result, 
further exploration of the parameter space is not pursued here.

Finally, it is worth briefly describing a few subtle implications of the equilibrium 
conditions of the model. Focusing on the system after around 150 time units in Fig. 2B, 
it is clear that the proportion of space that remains suitable for crime does not change 
despite active place-based deterrence. There are two points to be made about this 
equilibrium state. First, a reduction in the global proportion of space suitable for crime 
would require changes in the intrinsic rates that drive the model. More police resources 
could be brought to bear that would increase the rate at which initial deterrence is 
established in new places (i.e., larger c1) or slow the rate at which initial deterrence 
globally decays (i.e., smaller m1). Alternatively, interventions (other than place-based 
deterrence) could decrease the intrinsic rate at which offenders discover and establish 
conditions favorable for crime (i.e., smaller c2) or increase the rate at which such 
conditions decay (i.e., larger m2). If such were to occur, then we should expect to 

4 The conditions are obviously more nuanced than this simple conclusion. Tilman (1994) shows that inferior 
competitors who can hold places longer than superior ones (i.e., m2 < m1) can also produce p∗

2 > 0 but 
these conditions are more restrictive.
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see equilibrium proportions change accordingly. Absent such changes, the equilibrium 
volume of policing and crime would not change. However, this interpretation assumes 
a constant world. In real-world systems, we would expect the parameter values to 
change naturally over time such that the proportion of space under initial deterrence 
and suitable for crime would not appear stationary.

Second, the equilibrium conditions create the false impression that the system is 
static. Recall that this is a spatially implicit model that tracks the proportion of space 
with initial deterrence p1 and suitable for crime p2 on an aggregate scale. Although 
the aggregate quantities do not change at equilibrium, the specific places with initial 
deterrence, currently suitable for crime, or in an open state with conditions neither 
favorable nor unfavorable to crime, are constantly turning over. There is a hidden 
dynamic landscape of competition between deterrence and crime that generates the 
aggregate pattern (Kohfeld and Sprague 1990). The next two sections borrow ideas from 
mathematical epidemiology to examine the types of landscape turnover and the character 
of deterrence decay implied by the model (Southall et al. 2023).

Place-based Turnover

Equations 1 and 2 model the rate of change in the proportion of sites with initial deterrence p1 
and the proportion suitable for crime p2. While these quantities appear stable at equilibrium, 
below the surface specific sites are constantly changing state. For example, police may 
leave one site, ending the period of initial deterrence there, but immediately establish 
deterrence somewhere else. At equilibrium, the proportion p∗

1 does not change but the spatial 
arrangement of sites with initial deterrence does. Similarly, offenders can discover or create 
favorable conditions for crime in one place while abandoning another at the same time, 
altering the spatial arrangement but not the equilibrium proportion p∗

2. The same dynamic 
holds for empty or neutral locations. This dynamic reading of the model means that we can 
interpret the individual terms in each equation as transition rates for the hidden process of 
places moving between different states (Southall et al. 2023; Gillespie 1977).

Fig. 3  The region of c1, c2 
parameter space that supports a 
non-zero equilibrium proportion 
of initial deterrence p∗

1 > 0 and 
suitable crime sites p∗

2 > 0 for 
the inequalities given by Eqs. 
3 and 4. The position of c1, c2 
from Fig. 2B is shown as a red 
point. With some exceptions, c2 
generally must be greater than c1 
for suitable crime sites to exist 
given initial deterrence active in 
the environment (Tilman 1994)
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An expanded version of Eq. 1 (with Eq. 2 repeated for completeness) makes the range 
of possible place-based state transitions clear:

	
dp1

dt
= c1p1(1 − p1 − p2) + c1p1p2 − m1p1 � (5)

	
dp2

dt
= c2p2(1 − p1 − p2) − m2p2 − c1p1p2 � (6)

Noting that c1p1p2 now appears in both Eqs. 5 and 6 but with opposite signs, the individual 
terms correspond to five distinct state transitions ongoing across space at equilibrium:

	● λ01 = c1p∗
1(1 − p∗

1 − p∗
2), the rate at which initial deterrence is established in open or 

empty places.
	● λ10 = m1p∗

1, the rate at which initial deterrence ends.
	● λ02 = c2p∗

2(1 − p∗
1 − p∗

2), the rate at which suitable crime sites are discovered in empty 
or open places.

	● λ20 = m2p∗
2, the rate at which suitable crime sites naturally fall out of use.

	● λ21 = c1p∗
1p∗

2, the rate at which initial deterrence suppresses suitable crime sites.

 The subscripts on λij  make explicit that the transition is from state i to state j and i, j = 0 
designates an open or empty place. At equilibrium, λ01 + λ21 = λ10 and λ02 = λ20 + λ21. 
That is, transitions adding a new state somewhere in the landscape are balanced by transitions 
that subtract that state from somewhere else, suggesting that the transition rates are constant 
and ensuring that the equilibrium condition dp1/dt = dp2/dt = 0 is satisfied.

Constant transitions rates at equilibrium imply that the system is well mixed and also that 
the underlying discrete transition events are independent and identically distributed within 
each transition type, which are conceptually similar to the “reaction channels” of Gillespie 
(2001). Under these conditions, each transition rate defines a stationary Poisson process 
operating at the landscape scale. The expected number of Poisson state transitions from i to 
j in some interval of time ∆t is then E[Nij ] = λij∆t. Although more complex underlying 
processes could be assumed, including Lévi jump processes (Chaturapruek et  al. 2013) 
or self-exciting point processes (Mohler et al. 2011), a Poisson process offers a relatively 
simple starting point to explore place-based turnover and the character of deterrence decay.

Place-based turnover refers to the sequence of transitions that locations across space 
go through. Here, I confine the analysis to a sequence of exactly two state transitions from 
initial deterrence to empty (or neutral) space and then from empty to suitable for crime. To 
model the sequence, I use a compartmental model derived from Eqs. 5 and 6 (Fig. 4A). The 
compartments in Fig. 4A are the different possible states and the arrows show the direction 
of transitions between states. At equilibrium, we know the proportion of space represented 
by each compartment (labeled p∗

1, etc.), although they are not drawn to scale (see Fig. 2B 
for the proportions). We also know the proportion of each compartment that originated 
from some immediately prior sate. Specifically, at equilibrium, all of the locations that 
comprise empty space at any one moment arose either from locations that were previously 
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subject to initial deterrence or previously suitable for crime; there are only two arrows 
pointing towards the empty space compartment. The proportion of empty space originating 
from initial deterrence (light blue, outlined in red) is given by π∗

10 = λ10/(λ10 + λ20). The 
proportion of empty space originating from previously suitable crime sites (light orange) is 
the complement given by π∗

20 = λ20/(λ10 + λ20). For the parameter values used in Fig. 2B, 
a proportion π∗

10 = 0.228 of empty space was subject to initial deterrence in the immediately 
prior state. For completeness, the proportion of empty space that was suitable for crime in 
the immediate prior state is π∗

20 = 0.772.
Turning to the landscape scale, the proportion of the environment that is currently empty 

but previously subject to initial deterrence is given by p∗
10 = (1 − p∗

1 − p∗
2) ∗ π∗

10. That is, p∗
ij  

is used to denote the equilibrium proportion of all space that followed a transition from state i 
to state j. For the parameter values used in Fig. 2B, around 17% of space at any given moment 
followed the state sequence from deterrence to empty. The landscape-scale proportions for 
other combinations of current and immediately prior state are shown in Fig. 4A.

Extending the above computations to sequences of three states, with two intervening 
state transitions, is relatively straightforward (Fig. 4B). For example, the proportion of 
space currently suitable for crime that transitioned from empty space and, prior to that, 
space subject to initial deterrence, is given by π10π02. This computation concerns only the 
compartment for space suitable for crime. At the landscape scale, the proportion of the 
total environment that followed this sequence is given by p∗

2π10π02. For the parameters 
in Fig. 2B, around 3.1% of the landscape, measured at a single moment, followed this 
sequence, the second lowest among all sequences. The most common sequence involves 
sites suitable for crime that go quiescent and then return to crime suitability. Around 
15.4% of the landscape, measured at a single moment, followed this sequence. The rarest 
turnover sequence involves initial deterrence separated by an empty or neutral period 
and a second period of initial deterrence. Around 1.0% of the landscape, measured at a 
single moment, followed this sequence. Intuitively, the relative prevalence of the different 
sequences makes sense given the proportions of initial deterrence and crime site suitability 
at equilibrium. Appendix B illustrates the entire branching structure for all possible three-
state sequences and shows that all sites measured instantaneously must have followed one 
of those sequences.

Fig. 4  A. Compartment model corresponding to Eqs. 5 and 6 showing the proportions within each 
compartment originating from another compartment. Region region in red is the proportion of 
empty space that previously was subject to initial deterrence. B. Equilibrium proportions of the 
environment that follows each unique two-state transition sequence. Proportions in B are based on 
model parameters from Fig. 2B
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Deriving Deterrence Decay

The end of initial deterrence followed by the re-emergence of crime suitability is exactly the 
sequence of events of interest in studies of place-based deterrence. The model so far provides a 
way to understand the proportion of the landscape experiencing that sequence of events (Fig. 4). 
However, we are interested in more than just whether this sequence occurs and how common it 
is. We also want to understand the temporal dynamics of the sequence, particularly the form of 
deterrence decay or how long it takes for crime to re-emerge once initial deterrence has ended.

Two of the rates defined above are core to understanding place-based deterrence decay. 
Recall that crime can only occur in a place with active deterrence after that deterrence ends. 
Extending the logic, assume that we focus on the proportion of space where we observe the 
arrival of a patrol unit. These are the locations where we know that initial deterrence has started. 
We are not strictly concerned with λ01, the rate at which active deterrence is established, nor 
λ21, the rate at which suitable crime sites are removed through suppression. These rates are 
important only insofar as they generate the observational sample for sites with initial deterrence. 
We are also not concerned with λ20, the rate at which suitable crime sites naturally fall out of 
use, since place-based deterrence by definition is not involved in such a process.

Given the subset of sites with initial deterrence, we are then interested in the probability 
that initial deterrence ends after τ1 time units. Since the rate λ10 is constant at equilibrium, 
we can model the end of initial deterrence as a stationary Poisson process. The probability 
density function for τ1 is then f(τ1) = λ10e−λ10τ1 . Although police patrol is only one part 
of place-based deterrence (Sherman 1990), we can still treat τ1 as a close proxy for the 
duration of police patrol (Koper 1995).

Once place-based deterrence ends, a site is then open to be discovered and established as 
suitable for crime. Reported crime and disorder events presumably follow shortly after a site 
becomes favorable to crime. Crime site discovery happens at a rate λ02. The waiting time 
between discovery events is τ2 which has a probability density function f(τ2) = λ02e−λ02τ2 . 
However, this waiting time applies equally to all open or empty locations, including sites 
empty after a previous period of deterrence as well as a previous period of crime site suitability. 
However, since Poisson processes are separable (Bertsekas and Tsitsiklis 2008), we can 
use the known proportions of empty space arising from different prior states to partition 
the overall discovery rate into separate processes. Specifically, λ02 = π10λ02 + π20λ02, 
where π10λ02 is the rate constant for the discovery of suitable crime sites following a prior 
period of deterrence and π20λ02 the rate constant following a prior period of crime site 
suitability. To simplify the notation, let λ̃02 = π10λ02 be the rate constant for the portion of 
space where crime site discovery follows the end of deterrence. Let τ̃2 be the corresponding 
waiting time, which has a probability density f(τ̃2) = λ̃02e−λ̃02τ̃2 .

For all practical purposes, τ̃2 measures the period of residual deterrence. That is, τ̃2 is the 
time between the end of initial deterrence at τ1 and the time when crime and disorder re-emerge 
(Sherman 1990; Koper 1995). Figure 5A shows the two probability density functions together 
with the function for τ2, which is the waiting time for the discovery of any site suitable for crime. 
Recall that, at equilibrium, the rate at which initial deterrence is established is the same at the 
rate at which it ends, ensuring that the proportion of space subject to initial deterrence remains 
constant. Thus, for the parameter regime illustrated in Fig. 2B, it is the case that the turnover 
in suitable crime sites is faster than the turnover in initial deterrence (i.e., E[τ2] < E[τ1]). This 
suggests that in an ‘abundant crime world’ offenders take advantage of open space by moving 
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faster than police, a key point matching the conclusion reached by Tilman (1994). However, if 
we restrict the analysis to only that portion of open space that emerged after the end of initial 
deterrence π10, then the waiting time to discover a suitable crime site is actually longer than the 
waiting time for the end of initial deterrence (that is, E[τ̃2] > E[τ1]) for the parameter regime 
in Fig. 2B. For sites going through this sequence of state transitions, it appears that crime site 
discovery is slower than the turnover of deterrence. Since initial deterrence is relatively rare 
in the environment (see Fig. 2B), opportunities to discover suitable crime sites after the end of 
initial deterrence are also rare (see Fig. 4). The time it takes to randomly discover such sites 
increases as the density of initial deterrence decreases (Holling 1959).

Now consider how τ1 and τ̃2 are related to the time a place is crime-free. There are two 
possible measures to consider (Fig. 5B). The first is what I call the total deterrence time. 
This encompasses the period of initial and the period of residual deterrence and is captured 
in the model by τ1 + τ̃2. We can sum the waiting times because we are dealing only with the 
part of empty space π10(1 − p∗

1 − p∗
2) that was previously under initial deterrence. The total 

waiting is the minimum time we should expect to see before crime and disorder emerge in a 
location, beginning from the onset of a bout of place-based policing. The second measure is 
the period of residual deterrence as defined by Sherman (1990) and Koper (1995). Residual 
deterrence is here captured by τ̃2 alone. This is the time it takes for crime and disorder to 
emerge after the end of initial deterrence.

Figure 6 plots histograms of simulated waiting times5 until crime and disorder emerge 
in a large number of places, using rates λ10 and λ̃02 and parameters from Fig. 2B. The 
probability density for total deterrence waiting times shows an internal mode and a right skew 
(Fig. 6A). On aggregate, short waiting times for crime and disorder to emerge occur with 
low probability. The probability then rises quickly to what we might call a ‘buffered waiting 
time,’ by analogy with journey-to-crime distributions (Brantingham and Brantingham 1981; 
Rossmo and Wheeler 2024). Long waiting times occur, but with decreasing frequency. 
The theoretical probability density function in Fig. 6A is a mixture distribution computed 

5 To avoid confusion, I use waiting time to refer to the probability of an event such as the end of initial 
deterrence first happens at time τ . The waiting time is characterized by a probability density function f(τ). 
I use survival time to refer to the cumulative probability that a site remains crime-free at time τ  given some 
form of prior deterrence.

Fig. 5  Waiting time probability density functions and their relationship to stages of deterrence. A. Waiting 
times for the end of active deterrence and the discovery of suitable crime sites for the system shown 
in Fig. 2B. Waiting time τ2 for the discovery of any open site for suitable for crime is shown in green. 
Waiting time τ̃2 only for those sites following initial deterrence shown in orange. B. The duration of initial 
deterrence is measured by τ1 (blue). Residual deterrence is measured by τ̃2 (white). Total deterrence 
covers the period from the onset of initial deterrence and the re-emergence of crime and disorder (orange) 
and is given by τ1 + τ̃2
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as the convolution of the two waiting time distributions for τ1 and τ̃2. If λ10 = λ̃02, then 
the convolution operation yields a gamma distribution with the common rate λ and shape 
parameter 2. If λ10 ̸= λ̃02 then the convolution yields a “gamma-like” distribution given as:

	
f(τ) = −λ10λ̃02

(
e−τλ10 − e−τλ̃02

)

λ10 − λ̃02
� (7)

In contrast, the waiting time for the emergence of crime and disorder given only residual 
deterrence is exponentially distributed (Fig. 6B) and follows exactly the probability density 
function shown in Fig. 5A for τ̃2. The theoretical probability density function for residual 
deterrence alone is f(τ) = λ̃02e−λ̃02τ . After a period of initial deterrence, during which 
crime is suppressed, we should observe very short waiting times until the re-emergence of 
crime and disorder. The probability of observing longer waiting times decreases rapidly.

The corresponding survival functions S(τ) can be directly derived from the above 
equations. Here, the survival function gives the probability that a place will be crime-free 
up to a given time. In general S(τ) = 1 −

´ t

0 f(τ)dt, where f(τ) is the (failure) waiting 
time density function of common notation. For the residual deterrence case, the survival 
function is simply S(τ) = e−λ02τ . For the total deterrence case, Eq. 7 integrates to:

	
S(τ) = 1 − λ10(1 − e−λ̃02τ ) + λ̃02(e−λ10τ − 1)

λ10 − λ̃02
� (8)

Fig. 6  Features of deterrence decay. A and B. Histograms of simulated waiting times and the theoretical 
probability density functions for the waiting time for crime site (re)discovery. C and D. Survival prob-
ability distributions. A and C. Total deterrence case from measured from the onset of deterrence. B and D. 
Residual deterrence case measured from the end of initial deterrence. Values of λ10 and λ̃02 correspond 
to parameters in Fig. 2B
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Figure 6C shows that the survival time under total deterrence starts slowly and then 
accelerates to an exponential form with increasing time since the onset of place-based 
policing. Figure 6D shows that the survival time under residual deterrence is exponential 
from the outset. These functional forms have important implications for optimal planning of 
police patrol that I take up in the Discussion.

Finally, I turn to the core elements of the Koper Curve (Koper 1995) which posits that 
longer place-based police patrols (up to a point) produce crime reduction benefits. Here, 
the expectation is that extending place-based patrol time will extend the waiting time until 
crime and disorder emerge, but longer patrols beyond should yield diminishing returns. 
Figure 7 shows the relationship between the two different measures of waiting time and 
the duration of the patrol as given by the present model. The relationship between the 
total deterrence waiting time τ1 + τ̃2 and patrol duration τ1 is understandably linear 
(Fig. 7A). Patrol duration, which is equivalent to the period of initial deterrence in the 
model, sets a floor for total deterrence waiting time. Residual deterrence then adds an 
exponentially distributed random waiting time to this floor. The total deterrence waiting 
time expected from theory for any value of patrol duration τ1 is simply τ1 + 1/λ̃02. The 
functional relationship is a straight line with an intercept equal to 1/λ̃02 and a slope of 
one. In practice, the slope of the relationship estimated from data can be larger or smaller 
than the theoretically expected value, though the estimate will almost certainly include 
the expected slope in the 95% confidence interval. For example, in Fig. 7A, which 
shows 104 simulated observations, a linear model fit of the observed data produced an 
estimated slope of 1.001 with standard error 0.02, encompassing the predicted slope of 
1. Estimated slopes less than 1 are also possible when fitting to observational data. Thus, 
the total deterrence mean waiting time can appear to be marginally shorter or longer 
at long patrol durations compared to short durations. Moreover, the deviation from the 
theoretical expectation can appear quite large for smaller observational sample sizes due 
to estimation error. However, the slope is generally not meaningfully different from that 
predicted by theory.

The model predicts no relationship between patrol duration τ1 and residual deterrence 
τ̃2. Once the period of initial deterrence has ended, no matter how long, there is an 
exponentially distributed amount of time until crime and disorder can resume. Thus, the 
expected waiting time based on theory is a constant 1/λ̃02 for all values of τ1. Here, as 
well, models fit to observational data will tend to deviate from the theoretically expected 

Fig. 7  Plot of deterrence against patrol duration for two cases. A. Total deterrence is the sum of the initial 
deterrence tied to patrol duration and the time to discover a suitable crime site after initial deterrence ends. 
B. Residual deterrence includes only the time to discover a suitable crime site after initial deterrence ends
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pattern, but not in a meaningful way. For example, in Fig. 7B, the estimated slope is 0.002, 
but encompasses the expected slope of 0. A slightly negative non-significant slope is also 
possible when fitting to observational data.

Discussion

The model presented above produces two broad theoretical observations. First, in the 
face of place-based deterrence, there are specific conditions that can produce non-zero 
proportions of suitable crime sites at equilibrium. These conditions boil down to an 
observation that place-based policing necessarily produces a “patchy” distribution of 
deterrence and that crime persists if offenders are able to find and exploit open patches. 
This point is explored more fully by Tilman (1994) who was motivated by the case of plant 
species competing for space.6

Second, the waiting time for crime and disorder to emerge and the crime-free survival 
function might follow one of two different distributions depending on how the waiting 
time is measured. If the focus is so-called total deterrence, which includes the time since 
the onset of policing to the next event of crime and disorder occurs, then the probability 
density function for the waiting time is “gamma-like” with an internal mode and long tail. 
The total deterrence survival function changes slowly at first and then accelerates. If the 
focus is strictly on residual deterrence, then both the waiting time and survival function are 
exponential in form. Both the total and residual deterrence cases reflect particular forms of 
deterrence decay derived from theory. When plotted against the period of initial deterrence 
(i.e., patrol duration) to match the idea behind the Koper Curve, total deterrence waiting 
times increase with initial deterrence. However, this is entirely expected since the total 
deterrence survival time is defined as the sum of initial and residual deterrence survival 
time. When residual deterrence waiting times are plotted against the period of initial 
deterrence, there is no statistical relationship. The expected waiting time is constant for all 
values of patrol duration. Neither measure shows the dependency on the period of initial 
deterrence suggested by Koper (1995).

The practical implications of this last result are important to consider before turning to 
possible explanations for the discrepancy. The result raises interesting questions about the 
value of periodically reinforcing place-based interventions. To see why this is an issue, start 
with the residual deterrence survival function S(τ) = e−λ̃02τ , which produces a survival 
probability of S(0) = 1 at the point where police leave a place and declines exponentially 
thereafter. Using the value of λ̃02 = 0.0547 (rounded for presentation) underlying the 
dynamics in Fig. 1B, the probability of surviving 20 time units (assumed to be minutes) 
crime-free after police leave is S(20) = 0.3351. Imagine now that the police perform a 
maintenance visit to the place after 15 minutes, rather than the full 20 minutes, to “reset” the 
survival function to S(0) = 1. They spend a few minutes engaged place-based activities, 
and then leave again. To assess whether this is a beneficial strategy, we need to know if the 
probability of surviving crime-free for 15 minutes after the intervention and 5 more minutes 

6 For those skeptical of the use of plant ecology as inspiration for the study of human systems it is worth 
re-reading founding works of Chicago School Sociology. Park, Burgess, and McKenzie (1925) made liberal 
use of plant ecology in describing the structure and function of cities and found plenty of justification for 
their approach.
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after the second—a total of 20 minutes of crime-free residual deterrence interrupted by a 
bout place-based maintenance—yields a greater probability of survival than just leaving 
the place alone for 20 minutes. We compute S(15)S(5) = 0.4404 × 0.7608 = 0.3351, 
which is identical to S(20) = 0.3351. The unfortunate conclusion is that there is no benefit 
to optimizing place-based policing to reset deterrence conditions if residual deterrence 
survival times are exponentially distributed. There appears to be a benefit to periodic 
maintenance if the measure of interest is total deterrence (i.e., combining initial and residual 
deterrence). For example, using Eq. 8 and the values of λ10 = 0.0667 and λ̃02 = 0.0547 
underlying Fig. 1B, then S(20) = 0.6608 while S(15)S(5) = 0.7709 × 0.8927 = 0.7422, 
a slight improvement in the probability of survival. Appearances can be deceiving, however. 
Recall that the survival function in this case includes both the suppression effects of initial 
deterrence and the waiting time of residual deterrence for offenders to discover sites after 
police have left. Some fraction of the total survival time is initial deterrence, and thus the 
higher survival probability for the strategy with maintenance comes from simply adding 
more initial deterrence, not from any residual benefit.

The modeling results discussed above are interesting but they do not mean that the 
ideas behind the Koper Curve are wrong. As alluded to in the introduction to this paper, 
the discrepancy between deterrence decay as modeled here and the results of Koper 
reflect both different methods and different assumptions. Here, the results are derived 
from first principles and produce qualitative expectations. That is, although the model 
is mathematically rigorous and points to the family of survival distributions we should 
expect to see if the model assumptions are correct, they do not tell us exactly what the 
distribution parameters should be. The model parameters were chosen to produce a low 
density of police deterrence at equilibrium and deterrence bouts lasting 15 time units on 
average, with the intention that the units be consistent with the Koper Curve. However, 
calibration of abstract mathematical models is a challenging problem as noted by other 
criminologists (Nagin et al. 2015; Short et al. 2010). Thus, the goal of theory here is to 
think about mechanisms and process, rather than to test any specific prediction.

The differences in assumptions are also important. The theory invoked by Sherman 
(1990), Koper (1995), and others (Nagin et al. 2015; Loughran et al. 2011) focuses on the 
internal decision-making process of offenders and implies situations where offenders are 
continuously monitoring locations subject to policing. Deterrence decay in that framework 
is largely an internal cognitive process, although in Nagin et al. (2015) the risk that offenders 
are willing to bear is related to the characteristics of criminal opportunities. In contrast, the 
cognitive processes of the offender are invoked in the present model only indirectly in that 
they could be the basis for the competitive superiority of initial deterrence over crime site 
suitability. Thus, a reasonable interpretation of the present model is that a location with 
initial deterrence is absolutely unfavorable to crime because of the risk preferences of all 
offenders who encounter that place. Recognize, however, that the model does not suggest 
that deterrence decay operates in the heads of offenders. Rather, in the model, if police are 
present in a place, then deterrence is absolute. If police are absent, there is no deterrence. 
Offender risk preference in the model is a step function.

Nevertheless, a type of deterrence decay is observed in the model. It operates on the 
aggregate scale. Initial deterrence decay is seen in the frequency distribution of patrol 
durations across all police patrols. The decay function should be exponential with a rate 
corresponding to the mean duration of the patrol. A large number of sites experience short 
patrols and a few sites experience long patrols. This is a reasonable way to understand 
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what happens with both routine and hotspot policing, with some directive to remain in 
places of interest for a certain amount of time (Telep et al. 2014). Specifically, if calls-
for-service are a stationary (constant) Poisson arrival process, then discretionary police 
patrols should end following that stationary Poisson process when prompted to act by 
incoming calls. The result will be patrol durations that are exponentially distributed at 
the aggregate scale.

A similar observation concerns the functional form of residual deterrence decay. Within 
the model, this is observed in the distribution of waiting times until a site is discovered 
and established as suitable for crime after initial deterrence as ended. Here, too, residual 
deterrence is exponentially distributed at the aggregate scale. One interpretation of the 
underlying process is that offenders have limited time (or attention) to monitor a collection 
of places. Whether or not police have left a place requires motivated offenders to drop what 
they are doing (e.g., non-criminal activity) and dedicate time and energy to looking for 
opportunities. If the time-creating interruptions arise from a stationary Poisson process, then 
the waiting time to onset of search should be exponentially distributed. If the rate at which 
suitable places are encountered is constant, then the waiting time to discovery will also be 
exponentially distributed according to a Poisson process.

The ecological mechanisms for initial and residual deterrence suggested here are 
not mutually exclusive with the psychologically-grounded mechanisms suggested by 
Sherman (1990) and central to the Koper Curve. Rather, both mechanisms might operate 
in parallel, with one or the other being more important depending on the situation. 
For example, certain preferred places on the landscape, such as public drug markets, 
cannot be easily replicated elsewhere. Offenders, therefore, might monitor place-based 
interventions in preferred places more closely to determine when it is safe to resume 
illicit activities. In such situations, we might expect patterns of residual (and initial) 
deterrence to exhibit the features described by Sherman and Koper. The uncertainty 
surrounding the chance of being caught may be the controlling factor in returning to 
business as usual in preferred places. However, many other types of crime and disorder, 
such as car theft or public antisocial behavior, are more opportunistic in nature. The 
relationship between crime and particular places is more a matter of convenience (or 
chance) than preference for these event types. Offenders may not monitor placed-based 
interventions in convenient places since it is easy to pass those opportunities blocked 
by police presence. In these situations, we might expect patterns of residual (and initial) 
deterrence to exhibit the features described by the present model. The time it takes to 
rediscover chance opportunities may be the controlling factor in returning to business 
as usual in convenient places. In general, crime landscapes almost certainly represent 
a mixture of preferred and convenient places. The observed character of place-based 
deterrence likely depends how place-based interventions sample that mixture. More 
research will be needed to explore these possibilities.

There are a number of limitations to the present model that are worth noting. First, the 
competitive dominance assumption central to the model is a useful first approximation 
of place-based interactions between police and offenders. There are certainly numerous 
empirical situations where competitive dominance is unlikely to hold. For example, police 
may be able to suppress crime and disorder in outdoor locations, where direct interactions 
between police and motivated offenders or suitable targets are possible, but not crimes 
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committed behind closed doors. It may be possible to relax competitive dominance 
assumptions using more complex compartmental models or a kinetic equations framework 
that treats deterrence as a probability distribution over places (Bellomo et al. 2015; Sisk et 
al. 2022). These approaches could allow for variable place-based interventions (e.g., shot 
drive-bys vs. longer interventions) as well as responses that differ by crime type. I leave 
this for future work.

Second, place-based policing is premised on the recognition that spatial processes are 
central to crime patterns and that those patterns can be leveraged to allocate police time and 
energy. Yet, here, space is treated implicitly, which induces some unrealistic behavior. For 
instance, distance does not matter at all in the model. From the perspective of the individual 
police officer or offender in the model, a site that nominally opens up on the other side of 
the “world” is no more difficult to access than one that opens up right next door. This is 
certainly not true in real-world settings. Similarly, the model assumes that it is just as easy 
or difficult to establish deterrence or crime site suitability in an open site that has never 
been visited before as it is in a site that has been visited many times before. There is no 
environmental memory in the system. In real-world settings, a site highly favorable to crime 
before a bout of crime suppression may be more likely to resume this status after initial and 
residual deterrence ends, whereas a site moderately favorable for crime would resume that 
status. Age-structured models could be adapted for this purpose (Sanchez et al. 2019). A 
more direct approach would be to use spatially explicit models based on partial differential 
equations that include distance and spatial memory of conditions (Calatayud et al. 2023; 
Lloyd et al. 2016; Rodriguez et al. 2021; Short et al. 2010). Spatially explicit models might 
produce markedly different results.

Third, the model developed here operates at a scale above the discrete, moment-to-
moment churn of policing and crime at geographic micro-places such as street segments 
or sub-neighborhood-sized areal units. It describes the average or “mean-field” behavior 
of the system. At the street level, policing and crime do not appear to be equilibrium 
processes (Mohler et  al. 2017). Yet, when we abstract away from the many stochastic 
events at the street level to aggregate measures such as the proportion of space given 
over to initial deterrence or suitable for crime, we expect to see much greater spatial 
and temporal pattern stability (Mohler et al. 2011). Stable aggregate patterns in policing 
and crime suggest that mean-field models are appropriate and warrant the examination 
of their equilibrium properties. Moreover, mean-field models can be derived from their 
stochastic counterparts used to describe the fine-grained behavior of street-level systems 
(Higham 2001; Short et al. 2008).

Finally, it is true that one could arrive at the final results of the paper by simply assuming 
that the two rates of primary interest—the end of initial deterrence and discovery of crime 
site suitability—are Poisson and then immediately proceed to discussing the associated 
waiting time and survival distributions. The unique contribution here lies in providing a 
mechanistic or ecological rationale, with a corresponding mathematical model, for Poisson 
rates. The model is a gross simplification, but nevertheless seeks to capture key features of 
how the real-world works. The number of unique rates to be tracked and the relative (and 
absolute) values of those rates are a product of the ideas instantiated in the model. The 
so-called Gillespie method for translating continuum mathematical models into discrete 
simulations also plays a role in connecting the mathematical theory suggested to measures 
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that could be explored empirically (Gillespie 1977). The Gillespie method is more than just 
a convenience. It has proven to be a quantitatively accurate way of moving between discrete 
and continuous systems, at least in the domains in which it is most commonly used, such as 
chemistry, epidemiology, and theoretical ecology. It is a good starting point for the current 
domain, but will require substantial future work to verify.

Supplementary information  Mathematica and Python notebooks are included to reproduce 
the findings in this paper.

Appendix A: Density-independent Models

Equations 1 and 2 assume density dependence in growth rates. The assumption implies that 
it becomes easier to establish initial deterrence and discover suitable crime sites as more of 
space is given over to these respective states. For example, when initial deterrence is rare, 
c1p′

1(1 − p′
1) > c1p1(1 − p1) for p′

1 > p1.
Alternative assumptions that remove these density dependence in growth lead to 

qualitatively similar outcomes. Assume here that the fundamental rates at which initial 
deterrence and crime site suitability are established are constant. That is, they do not benefit 
from other places in the environment already being in these states. This simplified setting 
can be expressed mathematically as (Gotelli 1998):

	
dp1

dt
= c1(1 − p1) − m1p1 � (A1)

	
dp2

dt
= c2(1 − p1 − p2) − m2p2 − c1p2 � (A2)

Note in Eq. A1 the constant supply of initial deterrence c1 that is only curtailed as space 
fills up (1 − p1). Similarly, in Eq. A2, there is constant supply of offender interest c2 that is 
only curtailed as space is filled up with initial deterrence and existing suitable crime sites 
(1 − p1 − p2). The rates at which initial deterrence m1p1 and crime site suitability m2p2 
end are proportionally dependent since such states have to first exist in order for them to 
cease to exist. The rate of crime site suppression is dependent only upon the constant supply 
of initial deterrence and the proportion of space given over to crime c1p2. In ecological 
settings, Eq. A1 is called a “propagule rain” model.

In spite of the difference between the main model and simplified model given by Eqs. 
A1 and A2, the dynamics are qualitatively similar (Fig. 8). The simplified model thus yields 
similar state transition rates and waiting times that can be interpreted in the same way as in 
the main model. For example, in the simplified model, the rate at which initial deterrence 
ends is still m1p1 while the rate at which crime sites are discovered is c2(1 − p∗

1 − p∗
2), 

which produces a qualitatively similar waiting time distribution after restricting to that 
portion of empty space that emerged from initial deterrence (Fig. 8B).
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Appendix B: Full Branching Structure

Figure 4B in the main text focuses on the three-state sequences that start with places subject 
to either initial deterrence or suitable for crime. Figure 9 shows the complete branching 
structure for all of the ways in which three-state sequences can be assembled. The landscape 
frequency of each intermediate node type is given as p∗

j πij  and each leaf node type as 
p∗

kπijπjk, where i is the initial state, j is the intermediate state, and k is the final state. For 
example, the proportion of space at an instantaneous moment that followed the sequence 
from empty to suitable for crime to initial deterrence (i.e., crime suppression) is computed 

Fig. 9  The full branching structure for places that experienced a sequence of exactly three states (two 
transitions) at some instantaneous point in time. The terminal leaf nodes give the expected proportion of 
places space in sate k that followed the sequence of states i to j to k. Coloring is the same as in Fig. 4B

 

Fig. 8  A “propagule rain” model where the supply of initial deterrence and crime site interest are constant. 
A. Temporal trajectory for the proportion of sites with initial deterrence p1 and suitable for crime 
p2. Compare with Fig. 2B. B. Histogram of simulated total deterrence waiting times and the theoretical 
probability density functions for the waiting time for crime site rediscovery. Compare with Fig. 6A. 
The computation takes into account the partitioning of space as shown in Fig. 4. Parameter values 
c1 = 0.071, m1 = 1.333, c2 = 0.321, m2 = 1.083 were chosen to produce equilibrium proportions 
similar to Fig. 2B and a mean waiting time to the end of initial deterrence of 15 time units
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as p∗
1π02π21. Note that the eight terms at the leaf nodes in Fig. 9 sum to 1, indicating that 

all locations in the environment, surveyed at a single point in time, must have followed one 
of the listed trajectories.
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